全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Littlewood-Paley积分与QK型空间的刻画
Littlewood-Paley Integrals and the Characterization of QK Type Spaces

DOI: 10.12677/PM.2021.113050, PP. 377-386

Keywords: Q型空间,Carleson测度,Littlewood-Paley函数
Q-Type Space
, Carleson Measure, Littlewood-Paley Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究一类新的一维Q型空间——QK,λ p(Ra)。首先给出了QK,λ p(Ra)的若干基本性质。进而通过一类Littlewood-Paley函数Φ所构成的卷积算子,得到了该空间的Carleson测度刻画。
In this paper, we introduce a new class of Q type spaces QK,λ p(Ra). We first investigate some basic properties of QK,λ p(Ra). Further, via a family of convolution operators generated by Littlewood-Paley functions Φ, we establish a Carleson measure characterization of QK,λ p(Ra).

References

[1]  Aulaskari, R., Xiao, J. and Zhao, R. (1995) On Subspaces and Subsets of BMOA and UBC. Analysis, 15, 101-121.
https://doi.org/10.1524/anly.1995.15.2.101
[2]  Essén, M., Janson, S., Peng, L. and Xiao, J. (2000) Q Spaces of Several Real Variables. Indiana University Mathematics Journal, 49, 575-615.
https://doi.org/10.1512/iumj.2000.49.1732
[3]  Dafni, G. and Xiao, J. (2004) Some New Tent Spaces and Duality Theorems for Fractional Carleson Measures and . Journal of Functional Analysis, 208, 377-422.
https://doi.org/10.1016/S0022-1236(03)00181-2
[4]  Wu, Z. and Xie, C. (2003) Q Spaces and Morrey Spaces. Journal of Functional Analysis, 201, 282-297.
https://doi.org/10.1016/S0022-1236(03)00020-X
[5]  Xiao, J. (2007) Homothetic Variant of Fractional Sobolev Space with Application to Navier-Stokes System. Dynamics of Partial Differential Equations, 4, 227-245.
https://doi.org/10.4310/DPDE.2007.v4.n3.a2
[6]  Li, P. and Zhai, Z. (2010) Well-Posedness and Regularity of Generalized Navier-Stokes Equations in Some Critical Q-Spaces. Journal of Functional Analysis, 259, 2457-2519.
https://doi.org/10.1016/j.jfa.2010.07.013
[7]  Essén, M. and Wulan, H. (2002) On Analytic and Meromorphic Function and Spaces of Q_K-Type. Illinois Journal of Mathematics, 46, 1233-1258.
[8]  Essén, M., Wulan, H. and Xiao, J. (2006) Several Function-Theoretic Characterizations of M?ius Invariant Spaces. Journal of Functional Analysis, 230, 78-115.
https://doi.org/10.1016/j.jfa.2005.07.004
[9]  Bao, G. and Wulan, H. (2014) Spaces of Several Real Variables. Abstract and Applied Analysis, 2014, 1-14.
https://doi.org/10.1155/2014/931937
[10]  陈萱. 与权函数相关的一维实变Q型空间的Carleson型刻画[J]. 理论数学, 2020, 10(10): 990-995.
https://doi.org/10.12677/PM.2020.1010116
[11]  Han, F. and Li, P. (2020) Characterizations for a Class of Q-Type Spaces of Several Real Variables. Advances in Mathematics (China), 49, 195-214.
[12]  Wulan, H. and Zhou, J. (2014) Decom-position Theorems for Spaces and Applications. Forum Mathematicum, 26, 467-495.
https://doi.org/10.1515/form.2011.174

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133