全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含油污泥微波热解技术应用现状及展望
Application Status and Prospect of Microwave Pyrolysis Technology of Oily Sludge

DOI: 10.12677/JOGT.2021.431001, PP. 1-7

Keywords: 含油污泥,微波热解,数值模拟,参数优化,应用
Oily Sludge
, Microwave Pyrolysis, Numerical Simulation, Parameter Optimization, Application

Full-Text   Cite this paper   Add to My Lib

Abstract:

含油污泥是石油的伴生品,给生态环境带来污染的同时也蕴含着丰富的油气资源。微波热解技术是一种处理含油污泥的高效方法,微波的热效应和非热效应可以促进油水乳状液的破乳,由于微波加热的选择性加热、穿透性、即时性等特点,微波技术被用于加热含油污泥进行热解,产生油、气、渣三相产物,减轻能源负担,降低环境污染。微波热解过程复杂,热解机理还不确定,采用Fluent对热解装置进行数值模拟和结合室内和现场试验,进一步优化工艺参数,提高设备的使用效率,为微波热解工业化应用提供技术支撑。
Oily sludge is an associated product of petroleum, which not only pollutes the ecological environment, but also contains rich oil and gas resources. Microwave pyrolysis technology is a highly efficient means of treating oily sludge. The thermal effect of microwave is that the microwave energy is absorbed by the dielectric material and converted into heat energy, which can promote the demulsification of oil-water emulsion. The weak Zeta potential can weaken the constraint on water molecules and promote the aggregation of small molecules of water, which is why the non-thermal effect of microwave can promote demulsification. Due to the characteristics of selective heating, penetration and immediacy of microwave heating, microwave technology has been used to heat oil sludge for pyrolysis. It can produce oil, gas and solid residue. Oil and gas resources can be used as fuel, which can reduce the energy burden and environmental pollution. And the solid residue can be used as adsorbents, catalysts and so on. The microwave pyrolysis process is complex, and the pyrolysis mechanism is still uncertain. Therefore, fluent is used to conduct numerical simulation of the pyrolysis device and combine with laboratory and field tests. It can not only further optimize the process parameters, but also improve the efficiency of the equipment. Finally, it provides technical support for the industrial application of microwave pyrolysis.

References

[1]  付必伟, 艾志久, 胡坤, 等. 微波辐射稠油降粘脱水实验研究[J]. 辐射研究与辐射工艺学报, 2015, 33(3): 49-54.
[2]  Zhang, Y.N., Chen, P., Liu, S.Y., et al. (2017) Effects of Feedstock Characteristics on Micro-wave-Assisted Pyrolysis—A Review. Bioresource Technology, 230, 143-151.
https://doi.org/10.1016/j.biortech.2017.01.046
[3]  Sun, S., Huang, X., Lin, J., et al. (2018) Study on the Effects of Catalysts on the Immobilization Efficiency and Mechanism of Heavy Metals during the Microwave Pyrolysis of Sludge. Waste Management, 77, 131-139.
https://doi.org/10.1016/j.wasman.2018.04.046
[4]  Sivagami, K., Tamizhdurai, P., Mujahed, S., et al. (2021) Process Optimization for the Recovery of Oil from Tank Bottom Sludge Using Microwave Pyrolysis. Process Safety and Environmental Protection, 148, 392-399.
https://doi.org/10.1016/j.psep.2020.10.004
[5]  许昌. 炼厂油泥微波热解特性实验研究[D]: [硕士学位论文]. 济南: 山东大学, 2019.
[6]  商辉, 张文慧, 翟云娟, 等. 含油钻井废弃物微波热解析技术[J]. 油田化学, 2019, 36(1): 169-173.
[7]  Li, H., Shi, P., Fan, X., et al. (2018) Understanding the Influence of Microwave on the Relative Volatility Used in the Pyrolysis of Indonesia Oil Sands. Chinese Journal of Chemical Engineering, 26, 1485-1492.
https://doi.org/10.1016/j.cjche.2018.02.035
[8]  权熙, 张军, 尹琳琳, 等. 污泥微波热解与传统热解过程硫转化途径解析[J]. 环境卫生工程, 2020, 28(4): 110.
[9]  杨亚青. 废轮胎微波热解过程及产物分布特性试验研究[D]: [硕士学位论文]. 济南: 山东大学, 2017.
[10]  黄晓菲. 微波热解模拟污泥产生物燃料及有机元素迁移规律研究[D]: [硕士学位论文]. 深圳: 深圳大学, 2018.
[11]  耿海红. 微波热解模拟污泥产生物炭的重金属转化与资源化利用研究[D]: [硕士学位论文]. 深圳: 深圳大学, 2018.
[12]  徐士祺, 马勇, 郝上京. 微波处理含油污泥影响因素实验研究[J]. 清洗世界, 2019, 35(10): 28-29.
[13]  Francis, P.P., Shravani, B., Vinu, R., et al. (2021) Production of Diesel Range Hydrocarbons from Crude Oil Sludge via Microwave-Assisted Pyrolysis and Catalytic Upgradation. Process Safety and Environmental Protection, 146, 383-395.
https://doi.org/10.1016/j.psep.2020.08.025
[14]  俞音, 蒋勇军, 高庆国, 等. 含油污泥热解综合处理技术研究与应用[C]//《环境工程》2018年全国学术年会. 北京: 工业建筑杂志社, 2018: 5.
[15]  Abdulredha, M.M., Siti, A.H. and Luqman, C.A. (2020) Overview on Petroleum Emulsions, Formation, Influence and Demulsification Treatment Techniques. Arabian Journal of Chemistry, 13, 3403-3428.
https://doi.org/10.1016/j.arabjc.2018.11.014
[16]  陆洋. 油水乳状液微波与超声波破乳研究[D]: [硕士学位论文]. 北京: 中国石油大学, 2017.
[17]  潘志娟. 基于微波破乳和热解的含油污泥资源化处理研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2015.
[18]  孙娜娜. 塔河稠油乳化降黏及微波化学破乳研究[D]: [博士学位论文]. 成都: 西南石油大学, 2016.
[19]  Abdurahman, N.H., Yunus, R.M., Azhari, N.H., et al. (2017) The Potential of Microwave Heating in Separating Water-in-Oil (w/o) Emulsions. Energy Procedia, 138, 1023-1028.
https://doi.org/10.1016/j.egypro.2017.10.123
[20]  吕旭. 微波强化炼厂含油污泥破乳脱水试验研究[D]: [硕士学位论文]. 济南: 山东大学, 2020.
[21]  Wang, Z., Dai, N., Wang, X., et al. (2020) Early-Stage Road Property Improvements of Cold Recycled Asphalt Emulsion Mixture with Microwave Technology. Journal of Cleaner Production, 263, Article ID: 121451.
https://doi.org/10.1016/j.jclepro.2020.121451
[22]  Hu, G., Feng, H., He, P., et al. (2020) Comparative Life-Cycle Assessment of Traditional and Emerging Oily Sludge Treatment Approaches. Journal of Cleaner Production, 251, Article ID: 119594.
https://doi.org/10.1016/j.jclepro.2019.119594
[23]  刘念汝, 王光华, 李文兵, 等. 城市污泥微波干化及污染物析出特性研究[J]. 工业安全与环保, 2016, 42(7): 80-83.
[24]  曾恩. 污泥防粘附与两级节能干燥系统研究[D]: [硕士学位论文]. 南昌: 南昌航空大学, 2018.
[25]  苏文湫. 微波干燥技术处理市政污泥实验研究[J]. 价值工程, 2016, 35(17): 105-107.
[26]  黄永锋. 含油污泥脱水-干化技术研究与应用[J]. 化工管理, 2017(4): 192-194.
[27]  Luo, J., Lin, J., Ma, R., et al. (2020) Effect of Different Ash/Organics and C/H/O Ratios on Characteristics and Reaction Mechanisms of Sludge Microwave Pyrolysis to Generate Bio-Fuels. Waste Management, 117, 188-197.
[28]  柯萍, 曾丹林, 崔佳伟. 酸洗对褐煤-玉米芯微波共热解特性的影响[J]. 应用化工, 2020, 49(11): 2733-2736.
[29]  Rodriguez-Alejandro, D.A., Zaleta-Aguilar, A., Rangel-Hernández, V.H., et al. (2018) Numerical Simulation of a Pilot-Scale Reactor under Different Operating Modes: Combustion, Gasification and Pyrolysis. Biomass and Bioenergy, 116, 80-88.
https://doi.org/10.1016/j.biombioe.2018.05.007
[30]  唐鑫鑫. 含油污泥低温热解过程实验研究及数值分析[D]: [硕士学位论文]. 济南: 山东大学, 2019.
[31]  梁坤, 周军, 吴雷, 等. 低变质煤微波热解数值模拟研究[J]. 煤炭转化, 2020, 43(4): 20-28.
[32]  Yu, S., Duan, Y., Zhou, X., et al. (2019) Three-Dimensional Simulation of a Novel Microwave-Assisted Heating Device for Methyl Ricinoleate Pyrolysis. Applied Thermal Engineering, 153, 341-351.
https://doi.org/10.1016/j.applthermaleng.2019.03.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133