全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

EB病毒相关淋巴瘤研究进展
Research Progress of Epstein Barr Virus Associated Lymphoma

DOI: 10.12677/WJCR.2021.112006, PP. 38-47

Keywords: Eb病毒,伯基特淋巴瘤,霍奇金淋巴瘤,弥漫大B细胞淋巴瘤
Eb Virus
, Burkitt’s Lymphoma, Hodgkin’s Lymphoma, Diffuse Large B-Cell Lymphoma

Full-Text   Cite this paper   Add to My Lib

Abstract:

Eb病毒(Epstein-Barr virus, EBV)属疱疹病毒群,为双链DNA病毒,超过90%的成年人为EBV健康携带者,尽管在绝大多数携带者中无害,EBV却以不同比例存在于多种免疫力看似正常的不同类型淋巴瘤及上皮细胞肿瘤患者的癌细胞中,包括伯基特淋巴瘤、霍奇金淋巴瘤、弥漫大B细胞淋巴瘤等。EBV相关淋巴瘤的发病机理与病毒基因表达及细胞基因表达间存在着复杂的关系,现就几种常见淋巴瘤中EBV的作用机制及相关研究进展进行综述。
Epstein Barr virus (EBV) is a new type of virus. EBV belongs to herpesvirus group, which is double stranded DNA virus. More than 90% of adults are healthy EBV carriers. Although it is harmless in most of the carriers, EBV exists in different proportions in cancer cells of different types of lymphoma and epithelial cell tumor patients with normal immunity, including Burkitt’s lymphoma, Hodgkin’s lymphoma, diffuse large B-cell lymphoma, etc. There is a complex relationship between the pathogenesis of EBV associated lymphoma and the gene expression of virus and cell. This article reviews the mechanism of EBV in several common lymphomas and the related research progress.

References

[1]  Young, L.S., Yap, L.F. and Murray, P.G. (2016) Epstein-Barr Virus: More than 50 Years Old and Still Providing Surprises. Nature Reviews Cancer, 16, 789.
https://doi.org/10.1038/nrc.2016.92
[2]  Cohen, M., Narbaitz, M., Metrebian, F., et al. (2014) Epstein-Barr Virus-Positive Diffuse Large B-Cell Lymphoma Association Is Not Only Restricted to Elderly Patients. International Journal of Cancer, 135, 2816-2824.
https://doi.org/10.1002/ijc.28942
[3]  Molyneux, E.M., Rochford, R., Griffin, B., et al. (2012) Burkitt’s Lymphoma. The Lancet, 379, 1234-1244.
https://doi.org/10.1016/S0140-6736(11)61177-X
[4]  Thorley-Lawson, D.A. (2001) Epstein-Barr Virus: Exploiting the Immune System. Nature Reviews Immunology, 1, 75-82.
https://doi.org/10.1038/35095584
[5]  Jiang, X.N., Yu, B.H., Yan, W.H., Lee, J., Zhou, X.Y. and Li, X.Q. (2019) Epstein-Barr Virus-Positive Diffuse Large B-Cell Lymphoma Features Disrupted Antigen Capture/Presentation and Hijacked T-Cell Suppression. Oncoimmunology, 9, Article ID: 1683346.
https://doi.org/10.1080/2162402X.2019.1683346
[6]  Long, H.M. (2018) Targeting EBV-Positive B- and T/NK-Cell Lymphomas. Blood, 132, 2315-2316.
https://doi.org/10.1182/blood-2018-10-878587
[7]  Hislop, A.D., Kuo, M., Drake-Lee, A.B., et al. (2005) Tonsillar Homing of Epstein-Barr Virus-Specific CD8+ T Cells and the Virus-Host Balance. Journal of Clinical Investigation, 115, 2546-2555.
https://doi.org/10.1172/JCI24810
[8]  Woon, H.G., Braun, A., Li, J., et al. (2016) Compartmentalization of Total and Virus-Specific Tissue-Resident Memory CD8+ T Cells in Human Lymphoid Organs. PLOS Pathogens, 12, e1005799.
https://doi.org/10.1371/journal.ppat.1005799
[9]  Morscio, J., Finalet Ferreiro, J., Vander Borght, S., et al. (2017) Identification of Distinct Subgroups of EBV-Positive Post-Transplant Diffuse Large B-Cell Lymphoma. Modern Pathology, 30, 370-381.
https://doi.org/10.1038/modpathol.2016.199
[10]  Perret, J.L., Moussavou-Kombila, J.B., Delaporte, E., et al. (2003) Prevalence of Hepatitis B and C Virus, HTLV-1 and HIV in Type B Lymphoproliferative Syndromes in Gabon. Bulletin de la Société de Pathologie Exotique, 96, 275-278.
[11]  Ogembo, J.G., Muraswki, M.R., McGinnes, L.W., et al. (2015) A Chimeric EBV gp350/220-Based VLP Replicates the Virion B-Cell Attachment Mechanism and Elicits Long-Lasting Neutralizing Antibodies in Mice. Journal of Translational Medicine, 13, 50.
https://doi.org/10.1186/s12967-015-0415-2
[12]  Queiroga, E.M., Gualco, G., Weiss, L.M., et al. (2008) Burkitt Lymphoma in Brazil Is Characterized by Geographically Distinct Clinicopathologic Features. American Journal of Clinical Pathology, 130, 946-956.
https://doi.org/10.1309/AJCP64YOHAWLUMPK
[13]  Guech-Ongey, M., Simard, E.P., Anderson, W.F., et al. (2010) AIDS-Related Burkitt Lymphoma in the United States: What Do Age and CD4 Lymphocyte Patterns Tell Us about Etiology and/or Biology? Blood, 116, 5600-5604.
https://doi.org/10.1182/blood-2010-03-275917
[14]  中华医学会血液学分会. 中国弥漫大B细胞淋巴瘤诊断与治疗指南(2013年版) [J]. 中华血液学杂志, 2013, 34(9): 816-819.
[15]  陈少红, 叶子茵, 杨静, 等. 老年性EBV阳性弥漫性大B细胞淋巴瘤临床病理特征[J]. 诊断病理学杂志, 2015(11): 661-664+668.
[16]  Alizadeh, A.A., Eisen, M.B., Davis, R.E., et al. (2000) Distinct Types of Diffuse Large B-Cell Lymphoma Identified by Gene Expression Profiling. Nature, 403, 503-511.
https://doi.org/10.1038/35000501
[17]  Pasqualucci, L. and Dalla-Favera, R. (2015) The Genetic Landscape of Diffuse Large B-Cell Lymphoma. Seminars in Hematology, 52, 67-76.
https://doi.org/10.1053/j.seminhematol.2015.01.005
[18]  Jaffe, E., Swerdlow, S.H.C.E., Campo, E., et al. (2008) WHO Classification of Tumours of the Haematopoietic and Lymphoid Tissues. IARC, Lyon.
[19]  Nicolae, A., Pittaluga, S., Abdullah, S., et al. (2015) EBV-Positive Large B-Cell Lymphomas in Young Patients: A Nodal Lymphoma with Evidence for a Tolerogenic Immune Environment. Blood, 126, 863-872.
https://doi.org/10.1182/blood-2015-02-630632
[20]  Said, J. (2015) The Expanding Spectrum of EBV+ Lymphomas. Blood, 126, 827-828.
https://doi.org/10.1182/blood-2015-06-648097
[21]  Cohen, M., Vistarop, A.G., Huaman, F., et al. (2017) Cytotoxic Response against Epstein Barr Virus Coexists with Diffuse Large B-Cell Lymphoma Tolerogenic Microenvironment: Clinical Features and Survival Impact. Scientific Reports, 7, Article No. 10813.
https://doi.org/10.1038/s41598-017-11052-z
[22]  Swerdlow, S.H., Campo, E., Pileri, S.A., et al. (2016) The 2016 Revision of the World Health Organization Classification of Lymphoid Neoplasms. Blood, 127, 2375-2390.
https://doi.org/10.1182/blood-2016-01-643569
[23]  Adam, P., Bonzheim, I., Fend, F., et al. (2011) Epstein-Barr Virus-Positive Diffuse Large B-Cell Lymphomas of the Elderly. Advances in Anatomic Pathology, 18, 349-355.
https://doi.org/10.1097/PAP.0b013e318229bf08
[24]  Hoeller, S., Tzankov, A., Pileri, S.A., et al. (2010) Epstein-Barr Virus-Positive Diffuse Large B-Cell Lymphoma in Elderly Patients Is Rare in Western Populations. Human Pathology, 41, 352-357.
https://doi.org/10.1016/j.humpath.2009.07.024
[25]  Oyama, T., Yamamoto, K., Asano, N., et al. (2007) Age-Related EBV-Associated B-Cell Lymphoproliferative Disorders Constitute a Distinct Clinicopathologic Group: A Study of 96 Patients. Clinical Cancer Research, 13, 5124-5132.
https://doi.org/10.1158/1078-0432.CCR-06-2823
[26]  Cardenas, D., Velez, G., Orfao, A., et al. (2015) Epstein-Barr Virus-Specific CD8(+) T Lymphocytes from Diffuse Large B Cell Lymphoma Patients Are Functionally Impaired. Clinical and Experimental Immunology, 182, 173-183.
https://doi.org/10.1111/cei.12682
[27]  Ok, C.Y., Papathomas, T.G., Medeiros, L.J., et al. (2013) EBV-Positive Diffuse Large B-Cell Lymphoma of the Elderly. Blood, 122, 328-340.
https://doi.org/10.1182/blood-2013-03-489708
[28]  White, R.E., Ramer, P.C., Naresh, K.N., et al. (2012) EBNA3B-Deficient EBV Promotes B Cell Lymphomagenesis in Humanized Mice and Is Found in Human Tumors. Journal of Clinical Investigation, 122, 1487-1502.
https://doi.org/10.1172/JCI58092
[29]  Sebastian, E., Alcoceba, M., Martin-Garcia, D., et al. (2016) High-Resolution Copy Number Analysis of Paired Normal-Tumor Samples from Diffuse Large B Cell Lymphoma. Annals of Hematology, 95, 253-262.
https://doi.org/10.1007/s00277-015-2552-3
[30]  Shaffer, A.L., Young, R.M. and Staudt, L.M. (2012) Pathogenesis of Human B Cell Lymphomas. Annual Review of Immunology, 30, 565-610.
https://doi.org/10.1146/annurev-immunol-020711-075027
[31]  Mandelbaum, J., Bhagat, G., Tang, H., et al. (2010) BLIMP1 Is a Tumor Suppressor Gene Frequently Disrupted in Activated B Cell-Like Diffuse Large B Cell Lymphoma. Cancer Cell, 18, 568-579.
https://doi.org/10.1016/j.ccr.2010.10.030
[32]  Pasqualucci, L., Compagno, M., Houldsworth, J., et al. (2006) Inactivation of the PRDM1/BLIMP1 Gene in Diffuse Large B Cell Lymphoma. Journal of Experimental Medicine, 203, 311-317.
https://doi.org/10.1084/jem.20052204
[33]  Tam, W., Gomez, M., Chadburn, A., et al. (2006) Mutational Analysis of PRDM1 Indicates a Tumor-Suppressor Role in Diffuse Large B-Cell Lymphomas. Blood, 107, 4090-4100.
https://doi.org/10.1182/blood-2005-09-3778
[34]  Lam, L., Davis, R., Pierce, J., et al. (2005) Small Molecule Inhibitors of IkappaB Kinase Are Selectively Toxic for Subgroups of Diffuse Large B-Cell Lymphoma Defined by Gene Expression Profiling. Clinical Cancer Research, 11, 28-40.
[35]  Kato, H., Karube, K., Yamamoto, K., et al. (2014) Gene Expression Profiling of Epstein-Barr Virus-Positive Diffuse Large B-Cell Lymphoma of the Elderly Reveals Alterations of Characteristic Oncogenetic Pathways. Cancer Science, 105, 537-544.
https://doi.org/10.1111/cas.12389
[36]  Loong, F., Chan, A.C., Ho, B.C., et al. (2010) Diffuse Large B-Cell Lymphoma Associated with Chronic Inflammation as an Incidental Finding and New Clinical Scenarios. Modern Pathology, 23, 493-501.
https://doi.org/10.1038/modpathol.2009.168
[37]  Sanchez-Gonzalez, B., Garcia, M., Montserrat, F., et al. (2013) Diffuse Large B-Cell Lymphoma Associated with Chronic Inflammation in Metallic Implant. Journal of Clinical Oncology, 31, e148-e151.
https://doi.org/10.1200/JCO.2012.42.8250
[38]  Kanno, H., Naka, N., Yasunaga, Y., et al. (1997) Production of the Immunosuppressive Cytokine Interleukin-10 by Epstein-Barr-Virus-Expressing Pyothorax-Associated Lymphoma: Possible Role in the Development of Overt Lymphoma in Immunocompetent Hosts. The American Journal of Pathology, 150, 349-357.
[39]  Kanno, H., Naka, N., Yasunaga, Y., et al. (1997) Role of an Immunosuppressive Cytokine, Interleukin-10, in the Development of Pyothorax-Associated Lymphoma. Leukemia, 11, 525-526.
[40]  Kanno, H., Yasunaga, Y., Iuchi, K., et al. (1996) Interleukin-6-Mediated Growth Enhancement of Cell Lines Derived from Pyothorax-Associated Lymphoma. Laboratory Investigation, 75, 167-173.
[41]  Kanno, H., Ohsawa, M., Hashimoto, M., et al. (1999) HLA-A Alleles of Patients with Pyothorax-Associated Lymphoma: Anti-Epstein-Barr Virus (EBV) Host Immune Responses during the Development of EBV Latent Antigen-Positive Lymphomas. International Journal of Cancer, 82, 630-634.
https://doi.org/10.1002/(SICI)1097-0215(19990827)82:5<630::AID-IJC2>3.0.CO;2-D
[42]  Kanno, H., Nakatsuka, S., Iuchi, K., et al. (2000) Sequences of Cytotoxic T-Lymphocyte Epitopes in the Epstein-Barr Virus (EBV) Nuclear Antigen-3B Gene in a Japanese Population with or without EBV-Positive Lymphoid Malignancies. International Journal of Cancer, 88, 626-632.
https://doi.org/10.1002/1097-0215(20001115)88:4<626::AID-IJC17>3.0.CO;2-Q
[43]  Nishiu, M., Tomita, Y., Nakatsuka, S., et al. (2004) Distinct Pattern of Gene Expression in Pyothorax-Associated Lymphoma (PAL), a Lymphoma Developing in Long-Standing Inflammation. Cancer Science, 95, 828-834.
https://doi.org/10.1111/j.1349-7006.2004.tb02189.x
[44]  Cesarman, E. (2013) Pathology of Lymphoma in HIV. Current Opinion in Oncology, 25, 487-494.
https://doi.org/10.1097/01.cco.0000432525.70099.a4
[45]  Arvey, A., Ojesina, A.I., Pedamallu, C.S., et al. (2015) The Tumor Virus Landscape of AIDS-Related Lymphomas. Blood, 125, e14-e22.
https://doi.org/10.1182/blood-2014-11-599951
[46]  Epstein, M.A., Achong, B.G. and Barr, Y.M. (1964) Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma. The Lancet, 1, 702-703.
https://doi.org/10.1016/S0140-6736(64)91524-7
[47]  Burkitt, D.P. (1969) Etiology of Burkitt’s Lymphoma—An Alternative Hypothesis to a Vectored Virus. Journal of the National Cancer Institute, 42, 19-28.
[48]  Geser, A., de The, G., Lenoir, G., et al. (1982) Final Case Reporting from the Ugandan Prospective Study of the Relationship between EBV and Burkitt’s Lymphoma. International Journal of Cancer, 29, 397-400.
https://doi.org/10.1002/ijc.2910290406
[49]  Niedobitek, G., Agathanggelou, A., Rowe, M., et al. (1995) Heterogeneous Expression of Epstein-Barr Virus Latent Proteins in Endemic Burkitt’s Lymphoma. Blood, 86, 659-665.
https://doi.org/10.1182/blood.V86.2.659.bloodjournal862659
[50]  Kelly, G., Bell, A. and Rickinson, A. (2002) Epstein-Barr Virus-Associated Burkitt Lymphomagenesis Selects for Downregulation of the Nuclear Antigen EBNA2. Nature Medicine, 8, 1098-1104.
https://doi.org/10.1038/nm758
[51]  Kelly, G.L., Milner, A.E., Tierney, R.J., et al. (2005) Epstein-Barr Virus Nuclear Antigen 2 (EBNA2) Gene Deletion Is Consistently Linked with EBNA3A, -3B, and -3C Expression in Burkitt’s Lymphoma Cells and with Increased Resistance to Apoptosis. Journal of Virology, 79, 10709-10717.
https://doi.org/10.1128/JVI.79.16.10709-10717.2005
[52]  Rowe, M., Kelly, G.L., Bell, A.I., et al. (2009) Burkitt’s Lymphoma: The Rosetta Stone Deciphering Epstein-Barr Virus Biology. Seminars in Cancer Biology, 19, 377-388.
https://doi.org/10.1016/j.semcancer.2009.07.004
[53]  Paschos, K., Smith, P., Anderton, E., et al. (2009) Epstein-Barr Virus Latency in B Cells Leads to Epigenetic Repression and CpG Methylation of the Tumour Suppressor Gene Bim. PLOS Pathogens, 5, e1000492.
https://doi.org/10.1371/journal.ppat.1000492
[54]  Kamranvar, S.A., Gruhne, B., Szeles, A., et al. (2007) Epstein-Barr Virus Promotes Genomic Instability in Burkitt’s Lymphoma. Oncogene, 26, 5115-5123.
https://doi.org/10.1038/sj.onc.1210324
[55]  Holowaty, M.N., Zeghouf, M., Wu, H., et al. (2003) Protein Profiling with Epstein-Barr Nuclear Antigen-1 Reveals an Interaction with the Herpesvirus-Associated Ubiquitin-Specific Protease HAUSP/USP7. Journal of Biological Chemistry, 278, 29987-29994.
https://doi.org/10.1074/jbc.M303977200
[56]  Li, M., Chen, D., Shiloh, A., et al. (2002) Deubiquitination of p53 by HAUSP Is an Important Pathway for p53 Stabilization. Nature, 416, 648-653.
https://doi.org/10.1038/nature737
[57]  Li, M., Brooks, C.L., Kon, N., et al. (2004) A Dynamic Role of HAUSP in the p53-Mdm2 Pathway. Molecular Cell, 13, 879-886.
https://doi.org/10.1016/S1097-2765(04)00157-1
[58]  Holowaty, M.N., Sheng, Y., Nguyen, T., et al. (2003) Protein Interaction Domains of the Ubiquitin-Specific Protease, USP7/HAUSP. Journal of Biological Chemistry, 278, 47753-47761.
https://doi.org/10.1074/jbc.M307200200
[59]  Saridakis, V., Sheng, Y., Sarkari, F., et al. (2005) Structure of the p53 Binding Domain of HAUSP/USP7 Bound to Epstein-Barr Nuclear Antigen 1 Implications for EBV-Mediated Immortalization. Molecular Cell, 18, 25-36.
https://doi.org/10.1016/j.molcel.2005.02.029
[60]  Sheng, Y., Saridakis, V., Sarkari, F., et al. (2006) Molecular Recognition of p53 and MDM2 by USP7/HAUSP. Nature Structural & Molecular Biology, 13, 285-291.
https://doi.org/10.1038/nsmb1067
[61]  Lu, J., Murakami, M., Verma, S.C., et al. (2011) Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) Confers Resistance to Apoptosis in EBV-Positive B-Lymphoma Cells through Up-Regulation of Survivin. Virology, 410, 64-75.
https://doi.org/10.1016/j.virol.2010.10.029
[62]  Hochberg, D., Middeldorp, J.M., Catalina, M., et al. (2004) Demonstration of the Burkitt’s Lymphoma Epstein-Barr Virus Phenotype in Dividing Latently Infected Memory Cells in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 101, 239-244.
https://doi.org/10.1073/pnas.2237267100
[63]  Bellan, C., Lazzi, S., Hummel, M., et al. (2005) Immunoglobulin Gene Analysis Reveals 2 Distinct Cells of Origin for EBV-Positive and EBV-Negative Burkitt Lymphomas. Blood, 106, 1031-1036.
https://doi.org/10.1182/blood-2005-01-0168
[64]  Pileri, S.A., Ascani, S., Leoncini, L., et al. (2002) Hodgkin’s Lymphoma: The Pathologist’s Viewpoint. Journal of Clinical Pathology, 55, 162-176.
https://doi.org/10.1136/jcp.55.3.162
[65]  Mathas, S., Hartmann, S. and Kuppers, R. (2016) Hodgkin Lymphoma: Pathology and Biology. Seminars in Hematology, 53, 139-147.
https://doi.org/10.1053/j.seminhematol.2016.05.007
[66]  Aldinucci, D., Celegato, M. and Casagrande, N. (2016) Microenvironmental Interactions in Classical Hodgkin Lymphoma and Their Role in Promoting Tumor Growth, Immune Escape and Drug Resistance. Cancer Letters, 380, 243-252.
https://doi.org/10.1016/j.canlet.2015.10.007
[67]  Glaser, S.L., Lin, R.J., Stewart, S.L., et al. (1997) Epstein-Barr Virus-Associated Hodgkin’s Disease: Epidemiologic Characteristics in International Data. International Journal of Cancer, 70, 375-382.
https://doi.org/10.1002/(SICI)1097-0215(19970207)70:4<375::AID-IJC1>3.0.CO;2-T
[68]  Carroll, V. and Garzino-Demo, A. (2015) HIV-Associated Lymphoma in the Era of Combination Antiretroviral Therapy: Shifting the Immunological Landscape. Pathogens and Disease, 73, ftv044.
https://doi.org/10.1093/femspd/ftv044
[69]  Vockerodt, M., Morgan, S.L., Kuo, M., et al. (2008) The Epstein-Barr Virus Oncoprotein, Latent Membrane Protein-1, Reprograms Germinal Centre B Cells towards a Hodgkin’s Reed-Sternberg-Like Phenotype. The Journal of Pathology, 216, 83-92.
https://doi.org/10.1002/path.2384
[70]  Vrzalikova, K., Vockerodt, M., Leonard, S., et al. (2011) Down-Regulation of BLIMP1alpha by the EBV Oncogene, LMP-1, Disrupts the Plasma Cell Differentiation Program and Prevents Viral Replication in B Cells: Implications for the Pathogenesis of EBV-Associated B-Cell Lymphomas. Blood, 117, 5907-5917.
https://doi.org/10.1182/blood-2010-09-307710
[71]  Vockerodt, M., Wei, W., Nagy, E., et al. (2013) Suppression of the LMP2A Target Gene, EGR-1, Protects Hodgkin’s Lymphoma Cells from Entry to the EBV Lytic Cycle. The Journal of Pathology, 230, 399-409.
https://doi.org/10.1002/path.4198
[72]  Brauninger, A., Schmitz, R., Bechtel, D., et al. (2006) Molecular Biology of Hodgkin’s and Reed/Sternberg Cells in Hodgkin’s Lymphoma. International Journal of Cancer, 118, 1853-1861.
https://doi.org/10.1002/ijc.21716
[73]  Schmitz, R., Hansmann, M.L., Bohle, V., et al. (2009) TNFAIP3 (A20) Is a Tumor Suppressor Gene in Hodgkin Lymphoma and Primary Mediastinal B Cell Lymphoma. Journal of Experimental Medicine, 206, 981-989.
https://doi.org/10.1084/jem.20090528
[74]  Renne, C., Hinsch, N., Willenbrock, K., et al. (2007) The Aberrant Coexpression of Several Receptor Tyrosine Kinases Is Largely Restricted to EBV-Negative Cases of Classical Hodgkin’s Lymphoma. International Journal of Cancer, 120, 2504-2509.
https://doi.org/10.1002/ijc.22511
[75]  Leonard, S., Wei, W., Anderton, J., et al. (2011) Epigenetic and Transcriptional Changes which Follow Epstein-Barr Virus Infection of Germinal Center B Cells and Their Relevance to the Pathogenesis of Hodgkin’s Lymphoma. Journal of Virology, 85, 9568-9577.
https://doi.org/10.1128/JVI.00468-11

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133