全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

盐霉素对胶质母细胞瘤U87细胞抑制作用的研究
Studying of Inhibitory Effect of Salinomycin on Glioblastoma U87 Cells

DOI: 10.12677/HJBM.2021.112008, PP. 55-62

Keywords: 盐霉素,胶质母细胞瘤,凋亡
Salinomycin
, Glioblastoma, Apoptosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:观察盐霉素对人胶质母细胞瘤(U87)细胞增殖、凋亡的影响,检测盐霉素对凋亡相关基因表达影响以探究对U87细胞抑制机制。方法;分别用高浓度(SH, 4 μmol/L)、低浓度盐霉素(SL, 2 μmol/L)处理U87细胞,分为空白对照组(NC组)、SH组、SL组,48小时后,通过集落形成实验观察盐霉素对U87细胞的集落形成能力的影响。通过RT-PCR检测SENP2等33个凋亡相关下调基因RNA的表达水平。结果:集落形成实验结果显示,SH和SL组均能抑制U87的增殖,且成浓度依赖性(P < 0.05)。PCR结果得到SENP2等33个凋亡相关基因表达下调。结论;盐霉素对U87细胞增殖具有明显抑制作用,并促进细胞凋亡。
Objective: To observe the effect of salinomycin on the proliferation and apoptosis of human glio-blastoma U87 cells, and to detect the effect of salinomycin on the expression of apoptosis-related genes to explore the mechanism of inhibition on U87 cells. Methods: U87 cells were treated with high concentration (SH, 4 μmol/L) and low concentration salinomycin (SL, 2 μmol/L), and divided into NC group, SH group, and SL group. After 48 hours, observe the effect of salinomycin on the col-ony forming ability of U87 cells through the colony formation experiment. RT-PCR was used to de-tect the RNA expression level of 33 apoptosis-related down-regulated genes such as SENP2. Results: The results of MTT and colony formation experiments showed that both SH and SL groups could in-hibit the proliferation of U87 in a concentration-dependent manner (P < 0.05). Flow cytometry re-sults showed that the apoptosis rate in SH group increased. PCR results showed that the expression of 33 apoptosis-related genes such as SENP2 was down-regulated. Conclusion: Salinomycin can sig-nificantly inhibit the proliferation of U87 cells and promote cell apoptosis.

References

[1]  Sautès-Fridman, C., Cherfils-Vicini, J., et al. (2011) Tumor Microenvironment Is Multifaceted. Cancer and Metastasis Reviews, 30, 13-25.
https://doi.org/10.1007/s10555-011-9279-y
[2]  Clement, J.P., Aceti, M., Creson, T.K., et al. (2012) Pathogenic SYNGAP1 Mutations Impair Cognitive Development by Disrupting Maturation of Dendritic Spine Synapses. Cell, 151, 709-723.
https://doi.org/10.1016/j.cell.2012.08.045
[3]  Ostrom, Q.T. Haley, G., Lindsay, S., et al. (2015) Epidemiology of Gliomas. Cancer Treatment and Research, 163, 1-14.
https://doi.org/10.1007/978-3-319-12048-5_1
[4]  Umang, S. and Tara, M. (2013) A Review of the Symptomatic Management of Malignant Gliomas in Adults. Journal of the National Comprehensive Cancer Network, 11, 424-429.
https://doi.org/10.6004/jnccn.2013.0057
[5]  周青, 程越, 陶国娟, 倪月秋. 盐霉素抗肿瘤作用与细胞自噬[J]. 沈阳医学院学报, 2019, 21(6): 568-571.
[6]  张春影, 李奕. 盐霉素与Wnt/β-Catenin信号通路对乳腺癌干细胞的作用研究进展[J]. 临床与实验病理学杂志, 2018, 34(12): 1359-1361.
[7]  甘生敏, 罗超, 李娟等. 盐霉素对低分化鼻咽癌干细胞放疗敏感性的影响[J]. 中国老年学杂志, 2015, 35(10): 2601-2603.
[8]  Naujokat, C., Steinhart, R. and Huczynski, A. (2012) Salinomycin as a Drug for Targeting Human Cancer Stem Cells. Journal of Biomedicine and Biotechnology, 2012, Article ID: 950658.
https://doi.org/10.1155/2012/950658
[9]  李蕴潜, 赵丽艳, 李才. 选择性靶向肿瘤干细胞药物的研究现状[J]. 中国新药杂志, 2013, 22(24): 2903-2908
[10]  Miyazaki, Y., Shibuya, M., Sugawara, H., Kawaguchi, O., Hirose, C., Nagatsu, J. and Esumi, S. (1974) Salinomycin, A New Polyether Antibiotic. Journal of Antibiotics, 27, 814-821.
https://doi.org/10.7164/antibiotics.27.814
[11]  陈思远, 胡济安. 盐霉素诱导的细胞自噬机制在抗癌治疗中的应用进展[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 694-702.
[12]  Mitani, M., Yamanishi, T., Miyazaki, Y. and Otake, N. (1976) Salinomycin Effects on Mitochondrial Ion Translocation and Respiration. Antimicrobial Agents and Chemotherapy, 9, 655-660.
https://doi.org/10.1128/AAC.9.4.655
[13]  Lavine, M.D. and Gustavo, A. (2011) The Antibiotic Monensin Causes Cell Cycle Disruption of Toxoplasma gondii Mediated through the DNA Repair Enzyme TgMSH-1. Antimicrobial Agents and Chemotherapy, 55, 745-755.
https://doi.org/10.1128/AAC.01092-10
[14]  Gupta, P.B., Onder, T.T., Jiang, G.Z., et al. (2009) Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening. Cell, 138, 645-659.
https://doi.org/10.1016/j.cell.2009.06.034
[15]  Zhu, L.-Q., Zhen, Y.-F., Zhang, Y., et al. (2018) Salinomycin Activates AMP-Activated Protein Kinase-Dependent Autophagy in Cultured Osteoblastoma Cells: A Negative Regulator against Cell Apoptosis. PLoS ONE, 8, e84175.
[16]  Booth, L., Roberts, J.L., Conley, A., et al. (2014) HDAC Inhibitors Enhance the Lethality of Low Dose Salinomycin in Parental and Stem-Like GBM Cells. Cancer Biology & Therapy, 15, 305-316.
https://doi.org/10.4161/cbt.27309
[17]  Calzolari, A., Saulle, E., De Angelis, M.L., Pasquini, L., et al. (2017) Salinomycin Potentiates the Cytotoxic Effects of TRAIL on Glioblastoma Cell Lines. PLoS ONE, 9, e94438.
https://doi.org/10.1371/journal.pone.0094438
[18]  Qin, L.-S., Jia, P.-F., Zhang, Z.-Q. and Zhang, S.-M. (2015) ROS-p53-Cyclophilin-D Signaling Mediates Salinomycin-Induced Glioma Cell Necrosis. Journal of Experimental & Clinical Cancer Research, 34, 57.
https://doi.org/10.1186/s13046-015-0174-1
[19]  Chen, T.N., Yi, L., Li, F., et al. (2015) Salinomycin Inhibits the Tumor Growth of Glioma Stem Cells by Selectively Suppressing Glioma-Initiating Cells. Molecular Medicine Reports, 11, 2407-2412.
https://doi.org/10.3892/mmr.2014.3027

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133