全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

广义BBM-KdV方程的一个守恒C-N差分格式
A Conservative C-N Difference Scheme for the Generalized BBM-KdV Equation

DOI: 10.12677/PM.2021.114055, PP. 428-435

Keywords: 广义BBM-KdV方程,差分格式,守恒,收敛性,稳定性
Generalized BBM-KdV Equation
, Difference Scheme, Conservation, Convergence, Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

在进行非线性扩散波的研究时,BBM-KdV方程因能描述大量的物理现象如浅水波和离子波等而占有重要的地位,其数值研究少有涉及。本文研究了一类带有齐次边界条件的广义BBM-KdV方程的初边值问题,提出了一个具有二阶理论精度的两层非线性有限差分格式,合理模拟了问题本身的一个守恒量,并给出差分格式的先验估计,讨论其差分解的存在唯一性,并用离散泛函分析方法证明该格式的收敛性和无条件稳定性,最后通过数值模拟验证了该数值方法的可靠性。
In the study of nonlinear diffusion waves, the BBM-KdV equation occupies an important position because it can describe a large number of physical phenomena such as shallow water waves and ion waves, and its numerical research is rarely involved. This paper studies the initial-boundary value problem of a generalized BBM-KdV equation with homogeneous boundary conditions, and proposes a two-level nonlinear finite difference scheme with second-order theoretical accuracy, which reasonably simulates a conserved quantity of the problem itself. A priori estimation of the difference scheme is given, and the existence and uniqueness of the difference decomposition is discussed. Discrete functional analysis is used to prove the convergence and unconditional stability of the scheme. Finally, the reliability of the numerical method is verified by numerical simulation.

References

[1]  Rouatbi, A. and Omrani, K. (2017) Two Conservative Difference Schemes for a Model of Nonlinear Dispersive Equa-tions. Chaos, Solitons & Fractals, 104, 516-530.
https://doi.org/10.1016/j.chaos.2017.09.006
[2]  Peregrine, D.H. (1966) Calculations of the Development of an Undular Bore. Journal of Fluid Mechanics, 25, 321-330.
[3]  Peregrine, D.H. (1967) Long Waves on Beach. Journal of Fluid Mechanics, 27, 815-827.
https://doi.org/10.1017/S0022112067002605
[4]  Benjamin, T.B., Bona, J.L. and Mahony, J.J. (1972) Model Equations for Long Waves in Nonlinear Dispersive Systems. Philosophical Transactions of the Royal Society London, Series A, 272, 47-48.
https://doi.org/10.1098/rsta.1972.0032
[5]  Kortewag, D.J. and De Vries, G. (1985) On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39, 422-443.
https://doi.org/10.1080/14786449508620739
[6]  Achouri, T., Khiari, N. and Omrani, K. (2006) On the Conver-gence of Difference Schemes for the Benjamin-Bona-Mahony (BBM) Equation. Applied Mathematics and Computation, 182, 999-1005.
https://doi.org/10.1016/j.amc.2006.04.069
[7]  Omrani, K. and Ayadi, M. (2008) Finite Difference Discretization of the Benjamin-Bona-Mahony-Burgers Equation. Numerical Methods for Partial Differential Equations, 24, 239-248.
https://doi.org/10.1002/num.20256
[8]  Khalifa, A.K., Raslan, K.R. and Alzubaidi, H.M. (2007) A Finite Differ-ence Scheme for the MRLW and Solitary Waves Interactions. Applied Mathematics and Computation, 189, 346-354.
https://doi.org/10.1016/j.amc.2006.11.104
[9]  Omrani, K. (2006) The Convergence of Fully Discrete Galerkin Approximations for the Benjamin-Bona-Mahony (BBM) Equation. Applied Mathematics and Computation, 180, 614-621.
https://doi.org/10.1016/j.amc.2005.12.046
[10]  Achouri, T., Ayadi, M. and Omrani, K. (2009) A Fully Galerkin Method for the Damped Generalized Regularized Long-Wave (DGRLW) Equation. Numerical Methods for Partial Differential Equations, 25, 668-684.
https://doi.org/10.1002/num.20367
[11]  Kadri, T., Khiari, N., Abidi, F. and Omrani, K. (2008) Methods for the Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation. Numerical Methods for Partial Differential Equations, 24, 1501-1516.
https://doi.org/10.1002/num.20330
[12]  Achouri, T. and Omrani, K. (2010) Application of the Homotopy Per-turbation Method to the Modified Regularized Long-Wave Equation. Numerical Methods for Partial Differential Equations, 26, 399-411.
https://doi.org/10.1002/num.20441
[13]  Abbasbandy, S. and Shirzadi, A. (2010) The First Integral Method for Modified Benjamin-Bona-Mahony Equation. Communications in Nonlinear Science and Numerical Simulation, 15, 1759-1764.
https://doi.org/10.1016/j.cnsns.2009.08.003
[14]  Dehghan, M.., Abbaszadeh, M. and Mohebbi, A. (2014) The Numerical Solution of Nonlinear High Dimensional Generalized Benjamin-Bona-Mahony-Burgers Equation via the Meshless Method of Radial Basis Functions. Computers & Mathematics with Applications, 68, 212-237.
https://doi.org/10.1016/j.camwa.2014.05.019
[15]  Saka, B., ?ahin, A. and Da?, ?. (2011) B-Spline Collocation Algorithms for Numerical Solution of the RLW Equation. Numerical Methods for Partial Differential Equations, 27, 581-607.
https://doi.org/10.1002/num.20540
[16]  Mei, L. and Chen, Y. (2012) Numerical Solutions of RLW Equation Using Galerkin Method with Extrapolation Techniques. Computer Physics Communications, 183, 1609-1616.
https://doi.org/10.1016/j.cpc.2012.02.029
[17]  Mohammadi, M. and Mokhtari, R. (2011) Solving the Generalized Regularized Long Wave Equation on the Basis of a Reproducing Kernel Space. Journal of Computational and Applied Mathematics, 235, 4003-4014.
https://doi.org/10.1016/j.cam.2011.02.012
[18]  Dutykh, D. and Pelinovsky, E. (2014) Numerical Simulation of a Solitonic Gas in KDV and KDV-BBM Equations. Physics Letters A, 378, 3102-3110.
https://doi.org/10.1016/j.physleta.2014.09.008
[19]  Asokan, R. and Vinodh, D. (2018) Soliton and Exact Solutions for the KdV-BBM Type Equations by Tanh-Coth and Transformed Rational Function Methods. International Journal of Applied and Computational Mathematics, 4, Article No. 100.
https://doi.org/10.1007/s40819-018-0533-7
[20]  Chou, Y.L. (1991) Application of Discrete Functional Analysis to the Finite Difference Methods. Pergamon Press, Elmsford, 260 p.
[21]  Browder, F.E. (1965) Existence and Uniqueness Theorems for Solutions of Nonlinear Boundary Value Problems. Proceedings of Symposia in Applied Mathematics, 17, 24-49.
https://doi.org/10.1090/psapm/017/0197933

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133