全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

荷叶生物碱对脂肪变性HepG2细胞脂质积聚的影响
Effect of Alkaloid Extract from Lotus Leaf on Lipid Accumulation in HepG2 Cell

DOI: 10.12677/HJFNS.2021.102010, PP. 72-79

Keywords: 荷叶生物碱,脂质积聚,HepG2细胞,非酒精性脂肪肝
Lotus Leaf Alkaloid
, Lipid Accumulation, HepG2 Cell, Nonalcoholic Fatty Liver Disease

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以油酸诱导HepG2细胞脂肪变性构建非酒精脂肪肝(Nonalcoholic fatty liver disease, NAFLD)体外细胞模型,通过测定细胞存活率、胞内TG含量、胞内脂滴油红O染色情况和脂质代谢相关基因mRNA表达研究荷叶生物碱提取物(Lotus leaf extract, LLE)对NAFLD脂质积聚的影响。结果显示,LLE对脂肪变性HepG2细胞的IC50为73.77 μg/mL,在无细胞毒性的浓度下,LLE可明显降低脂肪变性HepG2细胞中甘油三酯(Triglyceride, TG)含量和脂滴积聚程度,且高浓度作用更为明显。进一步研究发现,LLE对脂肪变性HepG2细胞中SREBP-1c和ACCα的mRNA表达影响不大,但能显著上调脂肪变性HepG2中PPARα、CPT-1和ACOX1的mRNA表达水平(p < 0.05)。综上,LLE可抑制脂肪变性HepG2细胞增殖,降低细胞中TG含量和脂滴积聚,且该作用与TG的β-氧化分解有关。
In order to study the effect of lotus leaf extract (LLE) on liver fat accumulation induced by Nonalcoholic fatty liver disease, oleic acid-induced HepG2 cells was established and cell viability, TG contents and staining of lipid droplet and the expression of lipid metabolism related genes mRNA were detected. The results showed that the IC
50 of LLE on oleic acid-induced HepG2 cells were 73.77 μg/mL. LLE significantly reduced the content of TG and the lipid droplets in oleic acid-induced HepG2 cells. LLE had little effect on the mRNA expression of SREBP-1c and ACC, while it significantly increased the mRNA expression of PPAR α, CPT-1 and ACOX1 in oleic acid-induced HepG2. It is concluded that LLE is effective on inhibiting on cell viability and to reduce lipid accumulation in oleic acid-induced HepG2 cells, which is more related to the up-regulation of lipid β-oxidative.

References

[1]  Younossi, Z.M., Koenig, A.B., Abdelatif, D., et al. (2016) Global Epidemiology of Nonalcoholic Fatty Liver Dis-ease—Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology, 64, 73-84.
https://doi.org/10.1002/hep.28431
[2]  Longo, D.L., Diehl, A.M. and Day, C. (2017) Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis. The New England Journal of Medicine, 377, 2063-2072.
https://doi.org/10.1056/NEJMra1503519
[3]  国家药典委员会. 中华人民共和国药典(一部) [M]. 北京: 中国医药科技出版社, 2015.
[4]  程婷婷, 原新博, 惠小涵, 等. 荷叶生物碱成分及其调脂机制研究进展[J]. 中草药, 2019(8): 1998-2003.
[5]  范成太, 闫克里, 赵丽, 等. 高效液相色谱法测定降脂宁颗粒中药材荷叶中荷叶碱的含量[J]. 中国药物与临床, 2007, 7(12): 950-951.
[6]  朱良辉, 汪军, 尧享华. 高效液相色谱法测定荷丹颗粒中荷叶碱的含量[J]. 江西中医学院学报, 2005, 17(6): 38.
[7]  范婷婷. 荷叶生物碱类物质降脂减肥活性研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2013.
[8]  刘晓琴. 荷叶生物碱单体的分离纯化及其对3T3-L1前脂肪细胞作用的构效关系研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2015.
[9]  李纯伟, 张秋菊. 荷叶生物碱对非酒精性脂肪肝肝脏脂质沉积的影响[J]. 湘南学院学报(医学版), 2011, 13(2): 23-25.
[10]  袁洋. 非酒精性脂肪性肝病的代谢组学及荷叶生物碱干预机制研究[D]: [硕士学位论文]. 扬州: 扬州大学, 2008: 51-57.
[11]  Ning, Q., Wang, Y., Zhang, Y., et al. (2019) Nuciferine Prevents Hepatic Steatosis by Regulating Lipid Metabolism in Diabetic Rat Model. Open Life Sciences, 14, 699-706.
https://doi.org/10.1515/biol-2019-0079
[12]  Zhang, C., Deng, J.J., Liu, D., et al. (2018) Nuciferine Ameliorates Hepatic Steatosis in High-Fat Diet/Streptozocin- Induced Diabetic Mice through a PPARα/PPARγ Coactivator-1α Pathway. British Journal of Pharmacology, 175, 4218- 4228.
https://doi.org/10.1111/bph.14482
[13]  Guo, F., Yang, X., Li, X., et al. (2013) Nuciferine Prevents Hepatic Steato-sis and Injury Induced by a High-Fat Diet in Hamsters. PLoS ONE, 8, e63770.
https://doi.org/10.1371/journal.pone.0063770
[14]  肖淳欣, 杨妙婷, 陈芝娟, 等. 护肝清脂颗粒的质控研究[J]. 中药材, 2018, 41(6): 1408-1414.
[15]  冯秋琪, 任国艳, 乔香君, 柳嘉, 夏凯. 脂肪肝细胞模型的研究进展[J]. 中国细胞生物学学报, 2020, 42(12): 2256-2265.
[16]  刘畅, 张海华, 柴洋洋, 宋兴舜, 王金玲. 红树莓提取物降低油酸诱导HepG2细胞脂肪的积累[J]. 现代食品科技, 2019, 35(2): 24-31+178.
[17]  李懿. 油酸诱导的脂肪肝离体细胞模型中葡萄糖转运体II表达变化及意义[D]: [硕士学位论文]. 成都: 四川大学, 2004.
[18]  He, D., Zhang, P., Sai, X., et al. (2018) Camellia euphlebia Flower Extract Inhibits Oleic Acid-Induced Lipid Accumulation via Reduction of Lipogenesis in HepG2 Cells. European Journal of Integrative Medicine, 17, 1-8.
https://doi.org/10.1016/j.eujim.2017.11.002
[19]  劳玲玲. 委陵菜积雪草酸对非酒精性脂肪肝细胞脂质代谢的影响及作用机制研究[D]: [硕士学位论文]. 南宁: 广西医科大学, 2018.
[20]  Mashek, D.G. (2020) Hepatic Lipid Droplets: A Balancing Act between Energy Storage and Metabolic Dysfunction in NAFLD. Molecular Metabolism, Ar-ticle ID: 101115.
https://doi.org/10.1016/j.molmet.2020.101115
[21]  Ahmed, M.H. and Byrne, C.D. (2007) Mod-ulation of Sterol Regulatory Element Binding Proteins (SREBPs) as Potential Treatments for Non-Alcoholic Fatty Liver Disease (NAFLD). Drug Discovery Today, 12, 740-747.
https://doi.org/10.1016/j.drudis.2007.07.009
[22]  Shum, M., Ngo, J., Shirihai, O.S., et al. (2020) Mitochondrial Oxidative Function in NAFLD: Friend or Foe? Molecular Metabolism, Article ID: 101134.
https://doi.org/10.1016/j.molmet.2020.101134
[23]  Yoon, M. (2009) The Role of PPARα in Lipid Metabolism and Obesity: Focusing on the Effects of Estrogen on PPARα Actions. Pharmacological Research, 60, 151-159.
https://doi.org/10.1016/j.phrs.2009.02.004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133