|
Material Sciences 2021
应变速率对Al-Zn-Mg合金应力腐蚀性能的影响
|
Abstract:
通过电化学和应力腐蚀试验并结合扫描电镜分析了Al-Zn-Mg合金在3.5 wt% NaCl溶液中的应力腐蚀行为,阐明了应变速率对Al-Zn-Mg合金应力腐蚀性能的影响。研究结果表明,Al-Zn-Mg合金在3.5 wt% NaCl溶液中具有应力腐蚀敏感性;不同应变速率下(10?4 s?1、10?6 s?1和10?7 s?1)的Al-Zn-Mg合金应力腐蚀敏感性的差异来源于腐蚀环境和力学循环作用的程度。当应变速率为10?6 s?1时,合金具有最高的应力腐蚀敏感指数。当应变速率低于10?6 s?1时,腐蚀作用占主导位置,冗长的腐蚀时间造成裂纹断面的过度腐蚀,裂纹的扩展受阻,因而合金的应力腐蚀敏感指数稍有下降。当应变速率高于10?6 s?1时,力学的作用影响更大,裂纹面未充分发生腐蚀,应力作用已导致合金发生快速断裂,从而显著降低了合金的应力腐蚀敏感性。
The stress corrosion behavior of Al-Zn-Mg alloy in 3.5 wt% NaCl solution was investigated by elec-trochemical measurements, stress corrosion testing and scanning electron microscopy (SEM). The influence of strain rate on stress corrosion properties of Al-Zn-Mg alloy was revealed. The results showed that the Al-Zn-Mg alloy is sensitive to stress corrosion in 3.5 wt% NaCl solution. There was the highest stress corrosion sensitivity at the strain rate of 10?6 s?1. However, corrosion and me-chanical factors have different effects during stress corrosion sensitivity index of Al-Zn-Mg alloy at the different rates (10?4 s?1, 10?6 s?1 and 10?7 s?1). When the strain rates were lower than 10?6 s?1, enough long corrosion time caused corrosion crack in this strain rate range. The stress corrosion crack propagation is limited. So, slight decrease of the stress corrosion sensitivity occurs. As the strain rates were higher than 10?6 s?1, the stress corrosion susceptibility of Al-Zn-Mg alloy was low clearly. In this strain rate, the influence of mechanical factors on stress corrosion is greater than that of corrosion factors, which mainly leads to mechanical fracture of the Al-Zn-Mg alloy.
[1] | 刘玉玲, 王晨, 张修庆. 热处理工艺对导电铝合金力学性能的影响[J]. 材料科学, 2019, 9(9): 854-860.
https://doi.org/10.12677/MS.2019.99106 |
[2] | 孔亚非, 郭孝云, 和淑文, 师梦杰, 杨斌. 固溶处理对半固态7075铝合金浆料组织的影响[J]. 材料科学, 2016, 6(6): 322-328. |
[3] | 蓝艳全, 杨昭, 林森, 邓运来. Zn/Mg比对7003铝合金挤压型材组织与性能的影响[J]. 材料科学, 2020, 10(1): 1-8.
https://doi.org/10.12677/MS.2020.101001 |
[4] | 黄英, 邓运来, 陈龙, 张新明. 双级时效对7N01合金组织与性能的影响[J]. 材料科学, 2014, 4(3): 63-72. |
[5] | 赵龙, 叶凌英, 邓运来, 张臻, 钱鹏伟, 邓舒浩. 回归再时效温度对Al-Zn-Mg合金性能的影响[J]. 材料科学, 2018, 8(5): 617-624. https://doi.org/10.12677/MS.2018.85073 |
[6] | 商婷婷, 邓运来, 郭晓斌, 田爱琴. Cu含量对Al-5Zn-2.6Mg-xCu合金组织和性能的影响[J]. 材料科学, 2020, 10(4): 238-247. https://doi.org/10.12677/MS.2020.104029 |
[7] | Zhang, Z., Deng, Y., Ye, L., Sun, L., Xiao, T. and Guo, X. (2020) Effect of Multi-Stage Aging Treatments on the Precipitation and Mechanical Properties of Al-Zn-Mg Alloys. Materials Science & Engineering A, 785, Article ID: 139394. https://doi.org/10.1016/j.msea.2020.139394 |
[8] | Zhang, Z., Deng, Y., Ye, L., Zhu, W., Wang, F., Jiang, K., et al. (2020) Influence of Aging Treatments on the Strength and Lo-calized Corrosion Resistance of Aged Al-Zn-Mg-Cu Alloy. Journal of Alloys and Compounds, 846, Article ID: 156223. https://doi.org/10.1016/j.jallcom.2020.156223 |
[9] | 唐鸿远, 张臻, 邓运来, 叶凌英, 钱鹏伟, 赵龙. 基于灰色系统理论的Al-Zn-Mg合金板材疲劳寿命预测[J]. 上海交通大学学报, 2018, 52(2): 228-232. |
[10] | 吴建山, 邓运来, 张臻, 张议丹, 孙琳. 加载方向对Al-Zn-Mg合金型材应力腐蚀开裂行为的影响[J]. 工程科学学报, 2019, 41(3): 350-358. |
[11] | 罗先甫, 刘晓勇, 张文利, 查小琴, 张恒坤. 7020 铝合金在Cl-环境下的应力腐蚀与局部腐蚀性能及其相关性分析[J]. 材料保护, 2021, 54(1): 57-62. |
[12] | 张臻, 邓运来, 郭辉, 钱鹏传, 唐鸿远, 叶凌英. 应变速率对Al-Zn-Mg合金室温拉伸性能的影响[J]. 功能材料, 2017, 48(7): 215-220. |
[13] | 王彦红, 肖来荣, 耿占吉, 饶博, 康思清. 应变速率及环境介质对Zn-Cu-Ti合金应力腐蚀行为的影响[J]. 腐蚀与防护, 2013, 34(5): 410-412, 416. |
[14] | 成小乐, 祁志旭, 屈银虎, 时晶晶, 尹君. AZ31镁合金板等应变速率挤压研究[J].稀有金属材料与工程, 2019, 48(6): 1852-1859. |
[15] | 张惠臻, 张晓欣, 陈扬, 韩先洪. 热冲压钢B1500HS在不同应变速率下的氢脆现象研究[J]. 塑性工程学报, 2020, 27(5): 66-73. |
[16] | 温群锋, 程晓英, 张晓琰, 吴雨昊, 张春霞. 应变速率对Ti425钛合金油气管应力腐蚀的影响[J]. 腐蚀与防护, 2020, 41(12): 1-6, 30. |