全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Co3O4/ZnO复合材料的三乙胺气敏性能研究
Triethylamine Gas Sensing Properties of Co3O4/ZnO Composites

DOI: 10.12677/MS.2021.114037, PP. 309-316

Keywords: Co3O4,ZnO,三乙胺,气敏性能
Co3O4
, ZnO, Triethylamine, Gas Sensitivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过水热法成功地制备了Co3O4/ZnO复合材料系列样品。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对系列样品进行了成分、形貌和结构表征。结果表明,Co3O4的复合成功地阻止了ZnO晶粒的生长,达到细化晶粒的作用。在气敏测试中,发现当工作温度为240℃时,复合材料的气敏性能明显优于纯ZnO。其中样品ZC-14对50 ppm三乙胺气体的灵敏度达到77.3,是纯ZnO样品的4倍,且具有较快的响应(6 s)和恢复(13 s)特性,最低检出限达到1 ppm。同时,我们还发现ZC-14具有良好的重复性和稳定性。
Co3O4/ZnO composites were successfully synthesized by hydrothermal method. The component, morphology and structure of the samples were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the addition of Co3O4 successfully inhibited the growth of ZnO grains and refined them. In the gas sensitivity test, it was found that when the working temperature was 240?C, the gas sensitivity property of the composites was obviously higher than that of pure ZnO. The sensitivity of ZC-14 to 50 ppm triethylamine reaches 77.3, which was 4 times that of pure ZnO, and it had fast response (6 s) and recovery (13 s), and the minimum detection limit was 1 ppm. We also observed that ZC-14 had good repeatability and stability.

References

[1]  于子洋. 氧化锌和碳量子点基复合材料的制备及其气敏性能研究[D]: [博士学位论文]. 长春: 吉林大学, 2020.
[2]  陶国清, 程知萱, 张丹, 徐甲强. 双金属MOF衍生的Co掺杂氧化锌多孔材料制备及其气敏性能[J]. 功能材料, 2020, 51(9): 9185-9192.
[3]  Cheng, I.K., Lin, C.Y. and Pan, F.M. (2021) Gas Sensing Behavior of ZnO toward H2 at Temperatures below 300?C and Its Dependence on Humidity and Pt-Decoration. Applied Surface Science, 541, Article ID: 148551.
https://doi.org/10.1016/j.apsusc.2020.148551
[4]  Kathwate, L.H., Umadevi, G., Kulal, P.M., Nagaraju, P., Dubal, D.P., Nanjundan, A.K. and Mote, V.D. (2020) Ammonia Gas Sensing Properties of Al Doped ZnO Thin Films. Sensors and Actuators A: Physical, 313, Article ID: 112193.
https://doi.org/10.1016/j.sna.2020.112193
[5]  Nguyen, T.T.D., Dao, D.V., Kim, D.S., Lee, H.J., Oh, S.Y., Lee, I.H. and Yu, Y.T. (2020) Effect of Core and Surface Area toward Hydrogen Gas Sensing Performance Using Pd@ZnO Core-Shell Nanoparticles. Journal of Colloid and Interface Science, 587, 252-259.
https://doi.org/10.1016/j.jcis.2020.12.017
[6]  Ani, A., Poornesh, P., Nagaraja, K.K., Kolesnikov, E., Shchetinin, I.V., Antony, A., Kulkarni, S.D., Sanjeev, G., Petwal, V.C., Verma, V.P. and Dwivedi, J. (2020) Tuning of CO Gas Sensing Performance of Spray Pyrolyzed ZnO Thin Films by Electron Beam Irradiation. Materials Science in Semiconductor Processing, 119, Article ID: 105249.
https://doi.org/10.1016/j.mssp.2020.105249
[7]  Agarwal, S., Rai, P., Gatell, E.N., Llobet, E., Güell, F., Kumar, M. and Awasthi, K. (2019) Gas Sensing Properties of ZnO Nanostructures (Flowers/Rods) Synthesized by Hydrother-mal Method. Sensors and Actuators B: Chemical, 292, 24-31.
https://doi.org/10.1016/j.snb.2019.04.083
[8]  Cao, P., Yang, Z., Navale, S.T., Han, S., Liu, X., Liu, W., Lu, Y., Stadler, F.J. and Zhu, D. (2019) Ethanol Sensing Behavior of Pd-Nanoparticles Decorated ZnO-Nanorod Based Chemiresistive Gas Sensors. Sensors and Actuators B: Chemical, 298, Article ID: 126850.
https://doi.org/10.1016/j.snb.2019.126850
[9]  Xue, X.T., Zhu, L.Y., Yuan, K.P., Zeng, C., Li, X.X., Ma, H.P., Lu, H.L. and Zhang, D.W. (2020) ZnO Branched p-CuxO @n-ZnO Heterojunction Nanowires for Improving Acetone Gas Sensing Performance. Sensors and Actuators B: Chemical, 324, Article ID: 128729.
https://doi.org/10.1016/j.snb.2020.128729
[10]  Tsai, Y.S., Chou, T.W., Xu, C.Y., Huang, W.C., Lin, C.F., Wu, Y. S., Lin, Y.S. and Chen, H. (2019) ZnO/ZnS Core-Shell Nanostructures for Hydrogen Gas Sensing Performances. Ceramics International, 45, 17751-17757.
https://doi.org/10.1016/j.ceramint.2019.05.345
[11]  Runa, A., Zhang, X., Wen, G., Zhang, B., Fu, W. and Yang, H. (2018) Actinomorphic Flower-Like n-ZnO/p-ZnFe2O4 Composite and Its Improved NO2 Gas-Sensing Property. Materials Letters, 225, 73-76.
https://doi.org/10.1016/j.matlet.2018.04.087
[12]  Zhao, S., Shen, Y., Hao, F., Kang, C., Cui, B., Wei, D. and Meng, F. (2021) P-n Junctions Based on CuO-Decorated ZnO Nanowires for Ethanol Sensing Application. Applied Surface Science, 538, Article ID: 148140.
https://doi.org/10.1016/j.apsusc.2020.148140
[13]  Qin, C., Wang, Y., Gong, Y., Zhang, Z., and Cao, J. (2019) CuO-ZnO Hetero-Junctions Decorated Graphitic Carbon Nitride Hybrid Nanocomposite: Hydrothermal Synthesis and Ethanol Gas Sensing Application. Journal of Alloys and Compounds, 770, 972-980.
https://doi.org/10.1016/j.jallcom.2018.08.205
[14]  Lee, H.Y., Heish, Y.C. and Lee, C.T. (2019) High Sensitivity Detection of Nitrogen Oxide Gas at Room Temperature Using Zinc Oxide-Reduced Graphene Oxide Sensing Membrane. Journal of Alloys and Compounds, 773, 950-954.
https://doi.org/10.1016/j.jallcom.2018.09.290
[15]  Chinh, N.D., Hung, N.M., Majumder, S., Kim, C. and Kim, D. (2021) Hole-Supply-Rate-Controlled Methanol-Gas-Sensing Reaction over P-Type Co3O4/Single-Walled Carbon Nanotube Hybrid Structures. Sensors and Actuators B: Chemical, 326, Article ID: 128956.
https://doi.org/10.1016/j.snb.2020.128956
[16]  Qi, L., Zhong, C., Deng, Z., Dai, T., Chang, J., Wang, S., Fang, X. and Meng, G. (2020) Bacterial Cellulose Templated p-Co3O4/n-ZnONanocomposite with Excellent VOCs Response Performance. Chinese Journal of Chemical Physics, 33, 477-484.
https://doi.org/10.1063/1674-0068/cjcp2003038
[17]  Nie, S., Dastan, D., Li, J., Zhou, W.D., Wu, S.S. Zhou, Y.W. and Yin, X.T. (2021) Gas-Sensing Selectivity of n-ZnO/p-Co3O4 Sensors for Homogeneous Reducing Gas. Journal of Physics and Chemistry of Solids, 150, Article ID: 109864.
https://doi.org/10.1016/j.jpcs.2020.109864
[18]  Li, Y., Li, K., Luo, Y., Liu, B. Wang, H., Gao, L. and Duan, G. (2020) Synthesis of Co3O4/ZnO Nano-Heterojunctions by One-Off Processing ZIF-8@ZIF-67 and Their Gas-Sensing Performances for trimethylamine. Sensors and Actuators B: Chemical, 308, Article ID: 127657.
https://doi.org/10.1016/j.snb.2020.127657
[19]  Yun, P.D., Ma, S.Y., Xu, X.L., Wang, S.Y., Han, T., Sheng, H., Pei, S.T. and Yang, T.T. (2021) Excellent Triethylamine Sensor with Ultra-Fast Response and Recovery Time Based on Bulk Bi2WO6 Material. Materials Letters, 285, 129162.
https://doi.org/10.1016/j.matlet.2020.129162
[20]  王瑞, 王雪, 张琦琦, 翁咪娜. 硅胶管吸附-顶空/气相色谱法测定环境空气和废气中的一乙胺、二乙胺及三乙胺含量[J]. 浙江化工, 2021, 52(2): 44-48+51.
[21]  薛峰峰, 赵凯, 苑洪忠, 付佳, 赵子楠. 气相色谱法测定他达拉非原料药中甲胺与三乙胺的残留量[J]. 华西药学杂志, 2020, 35(3): 300-302.
[22]  段小燕, 吐拉别克?吐逊江, 施玉格, 管雪丽. 荧光分光光度法测定土壤中石油类[J]. 干旱环境监测, 2021, 35(1): 28-32.
[23]  张玉华, 季昌晋. 比色法测定废水中三乙胺[J]. 安徽化工, 1982(3): 35-37.
[24]  Islam, M., Srivastava, A.K., Basavaraja, B.M. and Sharma, A. (2021) “Nano-on-Micro” Approach Enables Synthesis of ZnO Nano-Cactus for Gas Sensing Applications. Sensors International, 2, Article ID: 100084.
https://doi.org/10.1016/j.sintl.2021.100084
[25]  Cao, J. Zhang, N., Wang, S. and Zhang, H. (2020) Electronic Structure-Dependent Formaldehyde Gas Sensing Performance of the In2O3/Co3O4 Core/Shell Hierarchical Hetero-structure Sensors. Journal of Colloid and Interface Science, 577, 19-28.
https://doi.org/10.1016/j.jcis.2020.05.028
[26]  Pei, S., Ma, S., Xu, X., Almamoun, O., Ma, Y. and Xu, X. (2021) Exploring Gas-Sensing Characteristics of (CH2OH)2 with Controlling the Morphology of BiVO4 by Adjusting pH of Solution. Journal of Alloys and Compounds, 859, Article ID: 158400.
https://doi.org/10.1016/j.jallcom.2020.158400
[27]  Zhang, J., Jia, X., Lian, D., Yang, J., Wang, S., Li, Y. and Song, H. (2021) Enhanced Selective Acetone Gas Sensing Performance by Fabricating ZnSnO3/SnO2 Concave Micro-cube. Applied Surface Science, 542, Article ID: 148555.
https://doi.org/10.1016/j.apsusc.2020.148555
[28]  Kim, J.H., Kim, J.Y., Mirzaei, A., Kim, H.W. and Kim, S.S. (2021) Synergistic Effects of SnO2 and Au Nanoparticles Decorated on WS2 Nanosheets for Flexible, Room-Temperature CO Gas Sensing. Sensors and Actuators B: Chemical, 332, Article ID: 129493.
https://doi.org/10.1016/j.snb.2021.129493
[29]  Zhao, Y., Yuan, X., Sun, Y., Wang, Q., Xia, X. and Tang, B. (2020) Facile Synthesis of Tortoise Shell-Like Porous NiCo2O4 Nanoplate with Promising Triethylamine Gas Sensing Properties. Sensors and Actuators B: Chemical, 323, Article ID: 128663.
https://doi.org/10.1016/j.snb.2020.128663
[30]  Wang, B.J., Ma, S.Y., Pei, S.T., Xu, X.L., Cao, P.F., Zhang, J.L., Zhang, R., Xu, X.H. and Han, T. (2020) High Specific Surface Area SnO2 Prepared by Calcining Sn-MOFs and Their Formaldehyde-Sensing Characteristics. Sensors and Actuators B: Chemical, 321, Article ID: 128560.
https://doi.org/10.1016/j.snb.2020.128560
[31]  Lian, X., Li, Y., Tong, X., Zou, Y., Liu, X., An, D. and Wang, Q. (2017) Synthesis of Ce-Doped SnO2 Nanoparticles and Their Acetone Gas Sensing Properties. Applied Surface Science, 407, 447-455.
https://doi.org/10.1016/j.apsusc.2017.02.228

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133