全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2021 

低氧与HIF-1对谷氨酰胺代谢的影响
Effects of Hypoxia and HIF-1 on Glutamine Metabolism

DOI: 10.12677/BP.2021.111001, PP. 1-8

Keywords: 低氧,HIF-1,谷氨酰胺,糖代谢,TCA循环
Hypoxia
, HIF-1, Glutamine, Glucose Metabolism, TCA Cycle

Full-Text   Cite this paper   Add to My Lib

Abstract:

在氧气充足的情况下,葡萄糖可以通过糖酵解和线粒体柠檬酸(TCA)循环为细胞提供能源和碳源。低氧会使TCA循环和电子传递链(ECT)受到抑制,葡萄糖无法被完全氧化,细胞缺乏能源和碳源。为了补充碳源和能源,低氧细胞促进谷氨酰胺代谢途径合成的柠檬酸参与TCA循环,为细胞提供必要的能源和碳源,低氧诱导因子(HIF-1)参与了这一调控。本文主要介绍了低氧环境下的谷氨酰胺代谢,分析了HIF-1与谷氨酰胺代谢之间的相互作用,为低氧糖代谢的调控机制提供理论依据。
When oxygen is sufficient, glucose can provide energy and carbon source for cells through glycolysis and mitochondrial citric acid (TCA) cycle. Hypoxia can inhibit TCA cycle and electron transport chain (ECT), glucose cannot be completely oxidized, and cells lack energy and carbon sources. In order to supplement carbon source and energy, hypoxic cells promote glutamine metabolism, synthesize citric acid, participate in TCA cycle, and provide necessary energy and carbon source for cells. Hypoxia inducible factor-1 (HIF-1) is involved in this regulation. This paper mainly introduces glutamine metabolism in hypoxic environment, analyzes the interaction between HIF-1 and glutamine metabolism, and provides theoretical basis for the regulation mechanism of hypoxic glucose metabolism.

References

[1]  Semenza, G.L. (2004) Hydroxylation of HIF-1: Oxygen Sensing at the Molecular Level. Physiology (Bethesda), 19, 176-182.
https://doi.org/10.1152/physiol.00001.2004
[2]  Wolfle, D., Schmidt, H. and Jungermann, K. (1983) Short-Term Modulation of Glycogen Metabolism, Glycolysis and Gluconeogenesis by Physiological Oxygen Concentra-tions in Hepatocyte Cultures. European Journal of Biochemistry, 135, 405-412.
https://doi.org/10.1111/j.1432-1033.1983.tb07667.x
[3]  Wang, G.L. and Semenza, G.L. (1993) General Involve-ment of Hypoxia-Inducible Factor 1 in Transcriptional Response to Hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 90, 4304-4308.
https://doi.org/10.1073/pnas.90.9.4304
[4]  Lee, J.W., Bae, S.H., Jeong, J.W., et al. (2004) Hypoxia-Inducible Factor (HIF-1) α: Its Protein Stability and Biological Functions. Experimental and Molecular Medicine, 36, 1-12.
https://doi.org/10.1038/emm.2004.1
[5]  Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S. and Kaelin, W.G. (2001) HIFalpha Targeted for VHL-Mediated Destruction by Proline Hy-droxylation: Implications for O2 Sensing. Science, 292, 464-468.
https://doi.org/10.1126/science.1059817
[6]  Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O’Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al. (2001) C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation. Cell, 107, 43-54.
https://doi.org/10.1016/S0092-8674(01)00507-4
[7]  Semenza, G.L. (2003) Targeting HIF-1 for Cancer Therapy. Nature Reviews Cancer, 3, 721-732.
https://doi.org/10.1038/nrc1187
[8]  Jelkmann, W. (1992) Erythropoietin: Structure, Control of Production and Function. Physiological Reviews, 72, 449-489.
https://doi.org/10.1152/physrev.1992.72.2.449
[9]  White, F.C., Carroll, S.M., Magnet, A. and Bloor, C.M. (1992) Exercise Induced Coronary Collateral Development: A Comparison to Other Models of Myocardial Angiogenesis. Cir-culation Research, 71, 1490-1500.
https://doi.org/10.1007/978-1-4615-3092-3_13
[10]  Taylor, L. and Curthoys, N.P. (2004) Glutamine Metabolism: Role in Acid-Base Balance. Biochemistry and Molecular Biology Education, 32, 291-304.
https://doi.org/10.1002/bmb.2004.494032050388
[11]  DeBerardinis, R.J., Mancuso, A., Daikhin, E., et al. (2007) Beyond Aerobic Glycolysis: Transformed Cells Can Engage in Glutamine Metabolism That Exceeds the Requirement for Protein and Nucleotide Synthesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 19345-19350.
https://doi.org/10.1073/pnas.0709747104
[12]  Feron, O. (2009) Pyruvate into Lactate and Back: From the Warburg Effect to Symbiotic Energy Fuel Exchange in Cancer Cells. Radiotherapy and Oncology, 92, 329-333.
https://doi.org/10.1016/j.radonc.2009.06.025
[13]  Dang, C.V. (2010) Glutaminolysis: Supplying Carbon or Nitro-gen or Both for Cancer Cells? Cell Cycle, 9, 3884-3886.
https://doi.org/10.4161/cc.9.19.13302
[14]  Dang, C.V. (2010) Rethinking the Warburg Effect with Myc Mi-cromanaging Glutamine Metabolism. Cancer Research, 70, 859-862.
https://doi.org/10.1158/0008-5472.CAN-09-3556
[15]  Wise, D.R. and Thompson, C.B. (2010) Glutamine Addic-tion: A New Therapeutic Target in Cancer. Trends in Biochemical Sciences, 35, 427-433.
https://doi.org/10.1016/j.tibs.2010.05.003
[16]  Bhutia, Y.D., Babu, E., Ramachandran, S. and Ganapathy, V. (2015) Amino acid Transporters in Cancer and Their Relevance to Glutamine Addiction: Novel Targets for the Design of a New Class of Anticancer Drugs. Cancer Research, 75, 1782-1788.
https://doi.org/10.1158/0008-5472.CAN-14-3745
[17]  Nicklin, P., et al. (2009) Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy. Cell, 136, 521-534.
https://doi.org/10.1016/j.cell.2008.11.044
[18]  Kamphorst, J.J., et al. (2015) Human Pancreatic Cancer Tumors Are Nutrient Poor and Tumor Cells Actively Scavenge Extracellular Protein. Cancer Research, 75, 544-553.
https://doi.org/10.1158/0008-5472.CAN-14-2211
[19]  Commisso, C., et al. (2013) Macropinocytosis of Protein Is an Amino Acid Supply Route in Ras-Transformed Cells. Nature, 497, 633-637.
https://doi.org/10.1038/nature12138
[20]  Lane, A.N. and Fan, T.W. (2015) Regulation of Mammalian Nucleotide Metabolism and Biosynthesis. Nucleic Acids Research, 43, 2466-2485.
https://doi.org/10.1093/nar/gkv047
[21]  GHolleran, A.L., Briscoe, D.A., Fiskum, G. and Kelleher, J.K. (1995) Glutamine Metabolism in AS-30D Hepatoma Cells. Evidence for Its Conversion into Lipids via Reductive Carboxylation. Molecular and Cellular Biochemistry, 152, 95-101.
https://doi.org/10.1007/BF01076071
[22]  Gameiro, P.A., Laviolette, L.A., Kelleher, J.K., Iliopoulos, O. and Stephanopoulos, G. (2013) Cofactor Balance by Nicotinamide Nucleo-tide Transhydrogenase (NNT) Coordinates Reductive Carboxylation and Glucose Catabolism in the Tricarboxylic Acid (TCA) Cycle. Journal of Biological Chemistry, 288, 12967-12977.
https://doi.org/10.1074/jbc.M112.396796
[23]  Metallo, C.M., Gameiro, P.A., Bell, E.L., Mattaini, K.R., Yang, J., Hiller, K., Jewell, C.M., Johnson, Z.R., Irvine, D.J., Guarente, L., et al. (2012) Reductive Glutamine Metabolism by IDH1 Mediates Lipogenesis under Hypoxia. Nature, 481, 380-384.
https://doi.org/10.1038/nature10602
[24]  Moreadith, R.W. and Lehninger, A.L. (1984) The Pathways of Glutamate and Glutamine Oxidation by Tumor Cell Mitochondria. Role of Mitochondrial NAD(P)+-Dependent Malic Enzyme. Journal of Biological Chemistry, 259, 6215-6221.
https://doi.org/10.1016/S0021-9258(20)82128-0
[25]  Alberghina, L. and Gaglio, D. (2014) Redox Control of Glu-tamine Utilization in Cancer. Cell Death & Disease, 5, e1561.
https://doi.org/10.1038/cddis.2014.513
[26]  Wroblewski, F. and Ladue, J.S. (1956) Serum Glutamic Pyruvic Transaminase in Cardiac with Hepatic Disease. Proceedings of the Society for Experimental Biology and Medicine, 91, 569-571.
https://doi.org/10.3181/00379727-91-22330
[27]  Altman, B.J., Stine, Z.E. and Dang, C.V. (2016) From Krebs to Clinic: Glutamine Metabolism to Cancer Therapy. Nature Reviews Cancer, 16, 619-634.
https://doi.org/10.1038/nrc.2016.71
[28]  Gaglio, D., Soldati, C., Vanoni, M., Alberghina, L. and Chiaradonna, F. (2009) Glutamine Deprivation Induces Abortive S Phase Rescued by Deoxyribonucleotides in K-Ras Transformed Fi-broblasts. PLoS ONE, 4, e4715.
https://doi.org/10.1371/journal.pone.0004715
[29]  Sellers, K., et al. (2015) Pyruvate Carboxylase Is Critical for Non-Small-Cell Lung Cancer Proliferation. The Journal of Clinical Investigation, 125, 687-698.
https://doi.org/10.1172/JCI72873
[30]  Zhang, Y., Ren, Y.-J., Guo, L.-C., Ji, C., Hu, J., Zhang, H.-H., Xu, Q.-H., Zhu,W.-D., Ming, Z.-J., Yuan, Y.-S., et al. (2017) Nucleus Accumbens-Associated Protein-1 Promotes Glycolysis and Survival of Hypoxic Tumor Cells via the HDAC4-HIF-1 Axis. Oncogene, 36, 4171-4181.
https://doi.org/10.1038/onc.2017.51
[31]  Warburg, O. (1956) On Respiratory Impairment in Cancer Cells. Science, 124, 269-270.
https://doi.org/10.1126/science.124.3215.267
[32]  Gameiro, P.A., Yang, J., Metelo, A.M., Perez-Carro, R., Baker, R., Wang, Z., Arreola, A., Rathmell, W.K., Olumi, A., Lopez-Larrubia, P., et al. (2013) In Vivo HIF-Mediated Reductive Carboxylation Is Regulated by Citrate Levels and Sensitizes VHL-Deficient Cells to Glutamine Deprivation. Cell Metab-olism, 17, 372-385.
https://doi.org/10.1016/j.cmet.2013.02.002
[33]  Le, A., Lane, A.N., Hamaker, M., Bose, S., Gouw, A., et al. (2012) Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells. Cell Metabolism, 15, 110-121.
https://doi.org/10.1016/j.cmet.2011.12.009
[34]  Wise, D.R., Ward, P.S., Shay, J.E.S., et al. (2011) Hypoxia Pro-motes Isocitrate Dehydrogenase-Dependent Carboxylation of α-Ketoglutarate to Citrate to Support Cell Growth and Via-bility. Proceedings of the National Academy of Sciences, 108, 19611-19616.
https://doi.org/10.1073/pnas.1117773108
[35]  Sun, R.C. and Denko, N.C. (2014) Hypoxic Regulation of Gluta-mine Metabolism through HIF1 and SIAH2 Supports Lipid Synthesis That Is Necessary for Tumor Growth. Cell Me-tabolism, 19, 285-292.
https://doi.org/10.1016/j.cmet.2013.11.022
[36]  Gao, P., et al. (2009) c-Myc Suppression of miR-23a/b Enhances Mitochondrial Glutaminase Expression and Glutamine Metabolism. Nature, 458, 762-765.
https://doi.org/10.1038/nature07823
[37]  Wang, Y., Bai, C., Ruan, Y., et al. (2019) Coordinative Metabolism of Glutamine Carbon and Nitrogen in Proliferating Cancer Cells under Hypoxia. Nature Communications, 10, 201.
https://doi.org/10.1038/s41467-018-08033-9
[38]  Perez-Escuredo, J., Dadhich, R.K., Dhup, S., Cacace, A., van Hee, V.F., de Saedeleer, C.J., Sboarina, M., Rodriguez, F., Fontenille, M.-J., Brisson, L., et al. (2016) Lactate Promotes Glutamine Uptake and Metabolism in Oxidative Cancer Cells. Cell Cycle (Georgetown, Tex.), 15, 72-83.
https://doi.org/10.1080/15384101.2015.1120930
[39]  Tapper, E.B., Jiang, Z.G. and Patwardhan, V.R. (2015) Re-fining the Ammonia Hypothesis: A Physiology-Driven Approach to the Treatment of Hepatic Encephalopathy. Mayo Clinic Proceedings, 90, 646-658.
https://doi.org/10.1016/j.mayocp.2015.03.003
[40]  Kappler, M., Pabst, U., Rot, S., Taubert, H., Wichmann, H., Schubert, J., Bache, M., Weinholdt, C., Immel, U.-D., Grosse, I., et al. (2017) Normoxic Accumulation of HIF1alpha Is Associated with Glutaminolysis. Clinical Oral Investigations, 21, 211-224.
https://doi.org/10.1007/s00784-016-1780-9
[41]  Patel, M.S. and Harris, R.A. (1995) Mammalian Alpha-Keto Acid Dehydrogenase Complexes: Gene Regulation and Genetic Defects. The FASEB Journal, 9, 1164-1172.
https://doi.org/10.1096/fasebj.9.12.7672509
[42]  Jiang, Z.-F., et al. (2017) Hypoxia Promotes Mitochondrial Glu-tamine Metabolism through HIF1a-GDH Pathway Inhuman Lung Cancer Cells. Biochemical and Biophysical Research Communications, 483, 32-38.
https://doi.org/10.1016/j.bbrc.2017.01.015

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133