全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

氯化氢催化氧化制氯气的研究进展
Recent Progress in Catalytic Oxidation of Hydrogen Chloride into Chlorine

DOI: 10.12677/japc.2021.101001, PP. 1-8

Keywords: Deacon反应,氯化氢,催化氧化,氯气,反应机理
Deacon Reaction
, Hydrogen Chloride, Catalytic Oxidation, Chlorine, Reaction Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

在众多涉氯化工过程中,氯原子利用率较低,导致产生大量副产氯化氢制约行业发展。氯化氢催化氧化循环制氯气,是一个低能耗、高效率、环境友好可解决大量副产氯化氢的有效途径。本文综述了Deacon催化剂的发展历程,以及不同Deacon催化剂的作用机理。虽然Ru基催化剂已在工业上实现大规模应用,但是如何提高催化剂稳定性,和降低催化剂成本,仍是未来需要重点研究的方向。
In many chlorine-related chemical processes, the low utilization of chlorine atoms with a large amount of hydrogen chloride as the by-product restricts the development of the chemical industry. Therefore, how to efficiently recover chlorine resources is an urgent issue for the chlorine-related industry. The catalytic oxidation of hydrogen chloride into chlorine, as the Deacon process, is an ef-fective way to solve this issue with low energy consumption, high efficiency and environmental friendliness. In this paper, the development of Deacon catalysts is reviewed, and their reaction mechanisms are also discussed. Ru-based catalysts have been used on a large scale in industry, but how to improve catalyst stability and reduce catalyst cost is still the key research direction for the future.

References

[1]  Teschner, D., Farra, R., Yao, L., Schl?gl, R., Soerijanto, H., Schom?cker, R., Schmidt, T., Szentmiklósi, L., Amrute, A.P., Mondelli, C., Pérez-Ramírez, J., Novell-Leruth, G. and López, N. (2012) An Integrated Approach to Deacon Chemistry on RuO2-Based Catalysts. Journal of Catalysis, 285, 273-284. https://doi.org/10.1016/j.jcat.2011.09.039
[2]  Till, Z., Varga, T., Réti, J. and Chován, T. (2017) Optimization Strategies in a Fixed-Bed Reactor for HCl Oxidation. Industrial & Engineering Chemistry Research, 56, 5352-5359.
https://doi.org/10.1021/acs.iecr.7b00750
[3]  López, N., Gómez-Segura, J., Marín, R.P. and Pérez-Ramírez, J. (2008) Mechanism of HCl Oxidation (Deacon Process) over RuO2. Journal of Catalysis, 255, 29-39.
https://doi.org/10.1016/j.jcat.2008.01.020
[4]  Pérez-Ramírez, J., Mondelli, C., Schmidt, T., Schlüter, O.F.K., Wolf, A., Mleczko, L. and Dreier, T. (2011) Sustainable Chlorine Recycling via Catalysed HCl Oxidation: From Fundamentals to Implementation. Energy & Environmental Science, 4, 4786-4799.
https://doi.org/10.1039/c1ee02190g
[5]  Zhang, J. (1998) Technology Progress of Hydrogen Chloride Catalytic Oxidation. China Chlor-Alkali, 5, 6-10.
[6]  Motupally, S., Mah, D.T., Freire, F.J. and Weidner, J.W. (1998) Recycling Chlorine from Hydrogen Chloride: A New and Economical Electrolytic Process. Electrochemical Society Interface, 7, 32-36.
[7]  Davy, H. (1811) On a Combination of Oxymuriatic Gas and Oxygene Gas. Philosophical Transactions of the Royal Society of London, 101, 155-162.
https://doi.org/10.1098/rstl.1811.0008
[8]  常培廷, 胡刚石, 韩明汉, 吴勤, 魏飞, 金涌. 两段循环流化床中氯化氢催化氧化制氯气[J]. 过程工程学报, 2006, 6(1): 47-50.
[9]  Tseng, H.H., Wey, M.Y. and Liang, Y.S. (2003) Catalytic Removal of SO2, NO and HCl from Incineration Flue Gas over Activated Carbon-Supportde Metal Oxides. Carbon, 41, 1079-1085.
https://doi.org/10.1016/S0008-6223(03)00017-4
[10]  Seki, K. (2010) Development of RuO2/Rutile-TiO2 Catalyst for Industrial HCl Oxidation Process. Catalysis Surveys from Asia, 14, 168-175.
https://doi.org/10.1007/s10563-010-9091-7
[11]  Hisham, M.W.M. and Benson, S.W. (1995) Thermochemistry of the Deacon Process. Journal of Physical Chemistry, 99, 6194-6198.
https://doi.org/10.1021/j100016a065
[12]  Over, H. (2012) Atomic-Scale Understanding of the HCl Oxidation over RuO2, a Novel Deacon Process. The Journal of Physical Chemistry C, 116, 6779-6792.
https://doi.org/10.1021/jp212108b
[13]  Tian, X., Wang, S., Wang, Z.J., Wang, H., Zhou, Y., Zhong, H. and Mao, Y. (2020) Sustainable Utilization of Chlorine via Converting HCl to Cl2 over a Robust Copper Catalyst. Molecular Catalysis, 492, Article ID: 110977.
https://doi.org/10.1016/j.mcat.2020.110977
[14]  Pan, H.Y., Minet, R.G., Benson, S.W. and Tsotsis, T.T. (1994) Process for Converting Hydrogen Chloride to Chlorine. Industrial & Engineering Chemistry Research, 33, 2996-3003.
https://doi.org/10.1021/ie00036a014
[15]  Wattimena, F. and Sachtler, W.M.H. (1981) Catalyst Research for the Shell Chlorine Process. Studay Surface Science Catalysis, 7, 816-827.
https://doi.org/10.1016/S0167-2991(08)64695-9
[16]  Hammes, M., Soerijanto, H., Schom?cker, R., Valtchev, M., St?we, K. and Maier, W.F. (2014) Niobium: Activator and Stabilizer for a Copper-Based Deacon Catalyst. ChemCatChem, 6, 245-254.
https://doi.org/10.1002/cctc.201300697
[17]  Mondelli, C., Amrute, A.P., Schmidt, T. and Perez-Ramirez, J. (2011) A Delafossite-Based Copper Catalyst for Sustainable Cl2 Production by HCl Oxidation. Chemical Communications, 47, 7173-7175.
https://doi.org/10.1039/c1cc11891a
[18]  Amrute, A.P., Mondelli, C. and Pérez-Ramírez, J. (2012) Kinetic Aspects and Deactivation Behaviour of Chromia-Based Catalysts in Hydrogen Chloride Oxidation. Catalysis Science & Technology, 2, 2057-2065.
https://doi.org/10.1039/c2cy20185b
[19]  Weckhuysen, B.M. and Wachs, I.E. (1996) In Situ Raman Spectroscopy of Supported Chromium Oxide Catalysts: Reactivity Studies with Methanol and Butane. The Journal of Physical Chemistry, 100, 14437-14442.
https://doi.org/10.1021/jp960543o
[20]  Uhm, J.H., Shin, M.Y., Jiang, Z.D. and Chung, J.S. (1999) Selective Oxidation of H2S to Elemental Sulfur over Chromium Oxide Catalysts. Applied Catalysis B: Environmental, 22, 293-303.
https://doi.org/10.1016/S0926-3373(99)00057-0
[21]  Hsieh, M.C., Ge, Y., Kahn, H., Michal, G.M., Ernst, F. and Heuer, A.H. (2012) Volatility Diagrams for the Cr-O and Cr-Cl Systems: Application to Removal of Cr2O3-Rich Passive Films Onstainless Steel. Metallurgical and Materials Transactions B, 43, 1187-1201.
https://doi.org/10.1007/s11663-012-9695-6
[22]  Amrute, A., Mondelli, C., Schmidt, T., Hauert, R. and Pérez-Ramírez, J. (2013) Industrial RuO2-Based Deacon Catalysts: Carrier Stabilization and Active Phase Content Optimization. ChemCatChem, 5, 748-756.
https://doi.org/10.1002/cctc.201200704
[23]  Yao, Z. and Reuter, K. (2018) First-Principles Computational Screening of Dopants to Improve the Deacon Process over RuO2. ChemCatChem, 10, 465-469.
https://doi.org/10.1002/cctc.201701313
[24]  Mondelli, C., Amrute, A.P., Krumeich, F., Schmidt, T. and Pérez-Ramírez, J. (2011) Shaped RuO2/SnO2-Al2O3 Catalyst for Large-Scale Stable Cl2 Production by HCl Oxidation. ChemCatChem, 3, 657-660.
https://doi.org/10.1002/cctc.201000424
[25]  Hevia, M.A.G., Amrute, A.P., Schmidt, T. and Pérez-Ramírez, J. (2010) Transient Mechanistic Study of the Gas-Phase HCl Oxidation to Cl2 on Bulk and Supported RuO2 Catalysts. Journal of Catalysis, 276, 141-151.
https://doi.org/10.1016/j.jcat.2010.09.009
[26]  Teschner, D., Novell-Leruth, G., Farra, R., Knop-Gericke, A., Schlogl, R., Szentmiklosi, L., Gonzalez Hevia, M., Soerijanto, H., Schomacker, R., Perez-Ramirez, J. and Lopez, N. (2012) In Situ Surface Coverage Analysis of RuO2-Catalysed HCl Oxidation Reveals the Entropic Origin of Compensation in Heterogeneous Catalysis. Nature Chemistry, 4, 739-745.
https://doi.org/10.1038/nchem.1411
[27]  Sun, Y., Hess, F., Djerdj, I., Wang, Z., Weber, T., Guo, Y., Smarsly, B.M. and Over, H. (2020) sReactivation of CeO2-Based Catalysts in the HCl Oxidation Reaction: In Situ Quantification of the Degree of Chlorination and Kinetic Modeling. ChemCatChem, 12, 5511-5522.
https://doi.org/10.1002/cctc.202000907
[28]  Tian, X., Lin, B., Li, Y., Wang, S., Zhou, Y. and Zhong, H. (2020) CeO2-MnOx Composite Loaded on Al2O3 as a Catalyst for HCl Oxidation. Catalysis Science & Technology, 10, 4553-4561.
https://doi.org/10.1039/D0CY00849D
[29]  Whittaker, E.J.W. (1964) Simple Procedures to a Hexagonal Unit Cell with a Volume Approximating 9000?3(Ettringite) Demonstrates Tts Great Usefulness. Mineralogical Magazine, 35, 554-555.
https://doi.org/10.1180/minmag.1965.035.271.15
[30]  Zhou, F., Zhao, X., Xu, H. and Yuan, C. (2007) CeO2 Spherical Crystallites:?Synthesis, Formation Mechanism, Size Control, and Electrochemical Property Study. Journal of Physical Chemistry C, 111, 1651-1657.
https://doi.org/10.1021/jp0660435
[31]  Moser, M., Mondelli, C., Schmidt, T., Girgsdies, F., Schuster, M.E., Farra, R., Szentmiklósi, L., Teschner, D. and Pérez-Ramírez, J. (2013) Supported CeO2 Catalysts in Technical Form for Sustainable Chlorine Production. Applied Catalysis B: Environmental, 132-133, 123-131.
https://doi.org/10.1016/j.apcatb.2012.11.024
[32]  Amrute, A.P., Mondelli, C., Moser, M., Novell-Leruth, G., López, N., Rosenthal, D., Farra, R., Schuster, M.E., Teschner, D., Schmidt, T. and Pérez-Ramírez, J. (2012) Performance, Structure, and Mechanism of CeO2 in HCl Oxidation to Cl2. Journal of Catalysis, 286, 287-297.
https://doi.org/10.1016/j.jcat.2011.11.016

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133