|
Pure Mathematics 2021
非线性薛定谔方程的差分格式
|
Abstract:
[1] | 郭柏灵, 谭绍滨. Hirota型非线性发展方程的整体光滑解[J]. 中国科学: A辑, 1992(8): 804-811. |
[2] | Zhou, Y.L. (1990) Applications of Discrete Functional Analysis to the Finite Difference Method. International Academic Publishers, Beijing and Oxford and New York. |
[3] | Hasegwa, A. and Tappert, F. (1973) Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers. Applied Physics Letters, 23, 142-144. https://doi.org/10.1063/1.1654836 |
[4] | Tourigny, Y. (1994) Some Pointwise Estimates for the Finite Element Solution of a Radial Nonlinear Schr?dinger Equation on a Class of Nonuniform Grids. Numerical Methods for Partial Differential Equations, 10, 757-769.
https://doi.org/10.1002/num.1690100609 |
[5] | Browder, F.E. (1965) Existence and Uniqueness Theorems for So-lutions of Nonlinear Boundary Value Problems. Proceedings of Symposia in Applied Mathematics, 17, 24-49. https://doi.org/10.1090/psapm/017/0197933 |
[6] | Corinne, L. (1997) The Cauchy Problem for a Third Order Non-linear Schr?dinger Equation. Nonlinear Analysis, 29, 121-158. https://doi.org/10.1016/S0362-546X(96)00081-8 |
[7] | 霍朝辉. 某些色散波方程的适定性问题[D]: [博士学位论文]. 北京: 中国工程物理研究院, 2004. |
[8] | Xie, S.S., Li, G.X. and Yi, S. (2009) Compact Finite Difference Schemes with High Accuracy for One-Dimensional Onlinear Schr?dinger Equation. Computer Methods in Applied Mechanics and Engineering, 198, 1052-1060.
https://doi.org/10.1016/j.cma.2008.11.011 |