全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非线性薛定谔方程的差分格式
Difference Scheme of Nonlinear Schr?dinger Equation

DOI: 10.12677/PM.2021.114063, PP. 496-502

Keywords: 非线性薛定谔方程,差分格式,守恒,存在
Nonlinear Schr?dinger Equation
, Difference Scheme, Conservation, Existence

Full-Text   Cite this paper   Add to My Lib

Abstract:

非线性薛定谔方程是目前最为活跃的研究课题之一,被广泛应用在生物医学、高能物理、量子力学以及非线性光学等很多领域,当我们想了解这些现象的原理时,就需要对非线性薛定谔方程的解进行研究。本文对一类非线性薛定谔方程的周差分格式进行了探究,对方程我们提出了一种非线性差分格式,证明了这个差分格式满足能量守恒定律和质量守恒定律,并且在这基础上验证了差分格式解的存在性问题。
The nonlinear Schr?dinger equation is one of the most active research topics at present, it is widely used in many fields such as biomedicine, high energy physics, quantum mechanics and nonlinear optics. When we want to understand the principles of these phenomena, it is necessary to study the solution of the nonlinear Schr?dinger equation. This paper explores the week difference scheme of a class of nonlinear Schr?dinger equation, we propose a nonlinear difference scheme for the equation, it is proved that this difference scheme satisfies the law of conservation of mass. And on this basis, the existence of the solution of the difference scheme is verified.

References

[1]  郭柏灵, 谭绍滨. Hirota型非线性发展方程的整体光滑解[J]. 中国科学: A辑, 1992(8): 804-811.
[2]  Zhou, Y.L. (1990) Applications of Discrete Functional Analysis to the Finite Difference Method. International Academic Publishers, Beijing and Oxford and New York.
[3]  Hasegwa, A. and Tappert, F. (1973) Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers. Applied Physics Letters, 23, 142-144.
https://doi.org/10.1063/1.1654836
[4]  Tourigny, Y. (1994) Some Pointwise Estimates for the Finite Element Solution of a Radial Nonlinear Schr?dinger Equation on a Class of Nonuniform Grids. Numerical Methods for Partial Differential Equations, 10, 757-769.
https://doi.org/10.1002/num.1690100609
[5]  Browder, F.E. (1965) Existence and Uniqueness Theorems for So-lutions of Nonlinear Boundary Value Problems. Proceedings of Symposia in Applied Mathematics, 17, 24-49.
https://doi.org/10.1090/psapm/017/0197933
[6]  Corinne, L. (1997) The Cauchy Problem for a Third Order Non-linear Schr?dinger Equation. Nonlinear Analysis, 29, 121-158.
https://doi.org/10.1016/S0362-546X(96)00081-8
[7]  霍朝辉. 某些色散波方程的适定性问题[D]: [博士学位论文]. 北京: 中国工程物理研究院, 2004.
[8]  Xie, S.S., Li, G.X. and Yi, S. (2009) Compact Finite Difference Schemes with High Accuracy for One-Dimensional Onlinear Schr?dinger Equation. Computer Methods in Applied Mechanics and Engineering, 198, 1052-1060.
https://doi.org/10.1016/j.cma.2008.11.011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133