全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于广义近似交替方向乘子法求解可分离凸优化问题
Solving Separable Convex Optimization Problem Based on Generalized Proximal Alternating Direction Method of Multipliers

DOI: 10.12677/PM.2021.114062, PP. 485-495

Keywords: 广义近似交替方向乘子法,可分离凸优化,随机加速,全局收敛
Generalized-Proximal Alternating Direction Method of Multipliers
, Separable Convex Optimization, Random Acceleration, Global Convergence

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了一种广义近似交替方向乘子法(gPADMM)来求解可分离凸优化问题。和近似邻近点算法(APPA)和扩展邻近交替方向方法(ePADM)相比,新算法不仅更新自定义矩阵的结构,而且引入随机变量进行随机加速更新步长,从而克服了旧算法固定步长的不灵活性。在某些适当的假设条件下,本文证明了新算法的全局收敛性,并且初步数值实验表明该算法是有效的,收敛速度比旧算法更快。
In this paper, we propose a generalized-proximal alternating direction method of multipliers (gPADMM) for separable convex optimization problem. Compared with the approximate proximal point algorithm (APPA) and the extend proximal alternating directions method (ePADM), the new algorithm not only updates the structure of customed matrix, but also induces random variables for random acceleration to update the step length, which overcomes the inflexibility of the old al-gorithms' fixed step length. We prove the global convergence of the new algorithm under certain mild conditions. And preliminary numerical experiments show that the algorithm is effective and the gPADMM converges faster than the old algorithms.

References

[1]  Glowinski, R. and Marrocco, A. (1974) Analyse numerique du champ magnetique d’un alternateur par elements finis et sur-relaxation ponctuelle non lineaire. Computer Methods in Applied Mechanics and Engineering, 3, 55-85.
https://doi.org/10.1016/0045-7825(74)90042-5
[2]  Gabay, D. and Mercier, B. (1976) A Dual Algorithm for the Solution of Nonlinear Variational Problems via Finite Element Approximation. Computers & Mathematics with Ap-plications, 2, 17-40.
https://doi.org/10.1016/0898-1221(76)90003-1
[3]  Gabay, D. (1983) Chapter IX: Applications of the Method of Multipliers to Variational Inequalities. Studies in Mathematics and Its Applications, 15, 299-331.
https://doi.org/10.1016/S0168-2024(08)70034-1
[4]  Douglas, J. and Rachford, H.H. (1956) On the Numerical Solution of Heat Conduction Problems in Two and Three Space Variables. Transactions of the AMS, 82, 421-439.
https://doi.org/10.1090/S0002-9947-1956-0084194-4
[5]  Cai, X.J., Gu, G.Y., He, B.S. and Yuan, X.M. (2013) A Proximal Point Algorithm Revisit on the Alternating Direction Method of Multipliers. Science China Mathematics, 56, 2179-2186.
https://doi.org/10.1007/s11425-013-4683-0
[6]  Eckstein, J. and Bertsekas, D. (1992) On the Douglas-Rachford Splitting Method and the Proximal Point Algorithm for Maximal Monotone Operators. Mathematical Programming, 55, 293-318.
https://doi.org/10.1007/BF01581204
[7]  Martinet, B. (1970) Regularisation, d’inequations variationelles par approximations succesives. Revue fran?aise d’informatique et de recherche opérationnelle, 4, 154-159.
https://doi.org/10.1051/m2an/197004R301541
[8]  Jiang, B.Q., Peng, Z. and Deng, K.K. (2019) Two New Customized Proximal Point Algorithms without Relaxation for Linearly Constrained Convex Optimization. Bulletin of the Iranian Mathematical Society, 46, 865-892.
https://doi.org/10.1007/s41980-019-00298-0
[9]  Gol’shtein, E.G. and Tret’yakov, N.V. (1979) Modified Lagrangian in Convex Programming and Their Generalizations. In: Point-to-Set Maps and Mathematical Programming, Mathematical Programming Studies Vol. 10, Springer, Berlin, 86-97.
https://doi.org/10.1007/BFb0120845
[10]  Ye, C.H. and Yuan, X.M. (2007) A Descent Method for Structured Monotone Variational Inequalities. Optimization Methods and Software, 22, 329-338.
https://doi.org/10.1080/10556780600552693
[11]  Li, M., Li, X.X. and Yuan, X.M. (2014) Convergence Analysis of the Generalized Alternating Direction Method of Multipliers with Logarithmic-Quadratic Proximal Regularization. Journal of Optimization Theory and Applications, 164, 218-233.
https://doi.org/10.1007/s10957-014-0567-x
[12]  Yuan, X.M. (2009) An Improved Proximal Alternating Direction Method for Monotone Variational Inequalities with Separable Structure. Computational Optimization and Applications, 49, 17-29.
https://doi.org/10.1007/s10589-009-9293-y
[13]  徐海文. 一类变分不等式的随机步长收缩算法[J]. 工程数学学报, 2011, 28(4): 462-469.
[14]  Wang, Y., Yang, J., Yin, W. and Zhang, Y. (2008) A New Alternating Minimization Algorithm for Total Variation Image Reconstruction. SIAM Journal on Imaging Sciences, 1, 248-272.
https://doi.org/10.1137/080724265
[15]  Tao, M., Yuan, X.M. and He, B.S. (2011) Solving a Class of Matrix Minimization Problems by Linear Variational Inequality Approaches. Linear Algebra and Its Applications, 434, 2343-2352.
https://doi.org/10.1016/j.laa.2010.11.041
[16]  He, B.S., Li, O.L.Z. and Wang, X. (2012) Proximal-Like Contraction Methods for Monotone Variational Inequalities in a Unified Framework II: Effective Quadruplet and Primary Methods. Computational Optimization and Applications, 5, 649-679.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133