|
Pure Mathematics 2021
关于某些连续函数的分数阶微积分的分形维数估计
|
Abstract:
[1] | Tatom, F.B. (1995) The Relationship between Fractional Calculus and Fractals. Fractals, 3, 217-229. https://doi.org/10.1142/S0218348X95000175 |
[2] | Z?hle, M. and Ziezold, H. (1996) Fractional Derivatives of Weierstrass-Type Functions. Journal of Computational and Applied Mathematics, 76, 265-275.
https://doi.org/10.1016/S0377-0427(96)00110-0 |
[3] | Z?hle, M. (1997) Fractional Di?erentiation in the Self-A?ne Case. V—The Local Degree of Di?erentiability. Mathematische Nachrichten, 185, 297-306. https://doi.org/10.1002/mana.3211850117 |
[4] | Kolwankar, K.M. and Gangal, A.D. (1996) Fractional Di?erentiability of Nowhere Di?eren- tiable Functions and Dimensions. Chaos, 6, 505-513. https://doi.org/10.1063/1.166197 |
[5] | Kolwankar, K.M. and Gangal, A.D. (1998) Local Fractional Derivatives and Fractal Functions of Several Variables. Physics. |
[6] | Miller, K.S. and Ross, B. (1993) An Introduction to the Fractional Calculus and Fractional Di?erential Equations. John Wiley Sons Inc., New York. |
[7] | 姚奎, 苏维宜, 周颂平. 关于一类 Weierstrass 函数的分数阶微积分函数 [J]. 数学年刊, 2004, 25(6): 711-716. |
[8] | Yao, K., Su, W.Y. and Zhou, S.P. (2005) On the Connection between the Order of the Frac- tional Calculus and the Dimension of a Fractal Function. Chaos, Solitons and Fractals, 23, 621-629. https://doi.org/10.1016/j.chaos.2004.05.037 |
[9] | Yao, K., Su, W.Y. and Zhou, S.P. (2006) On the Fractional Derivatives of a Fractal Function.
Acta Mathematica Sinica, 22, 719-722. https://doi.org/10.1007/s10114-005-0644-z |
[10] | Ruan, H.J., Su, W.Y. and Yao, K. (2009) Box Dimension and Fractional Integral of linear Fractal Interpolation Functions. Journal of Approximation Theory, 161, 187-197. https://doi.org/10.1016/j.jat.2008.08.012 |
[11] | Zhou, S.P., He, G.L. and Xie, T.F. (2004) On a Class of Fractals: The Constructive Structure.
Chaos, Solitons and Fractals, 19, 1099-1104. https://doi.org/10.1016/S0960-0779(03)00282-0 |
[12] | Liang, Y.S. and Su, W.Y. (2007) The Relationship between the Fractal Dimensions of a Type of Fractal Functions and the Order of Their Fractional Calculus. Chaos, Solitons and Fractals, 34, 682-692. https://doi.org/10.1016/j.chaos.2006.01.124 |
[13] | Liang, Y.S. (2007) Connection between the Order of Fractional Calculus and Fractal Dimen- sions of a Type of Fractal Functions. Analysis Theory and Its Application, 23, 354-363. https://doi.org/10.1007/s10496-007-0354-8 |
[14] | Liang, Y.S. (2008) The Relationship between the Box Dimension of the Besicovitch Functions and the Orders of Their Fractional Calculus. Applied Mathematics and Computation, 200, 297-307. https://doi.org/10.1016/j.amc.2007.11.014 |
[15] | Liang, Y.S. (2010) Box Dimensions of Riemann-Liouville Fractional Integrals of Continuous Functions of Bounded Variation. Nonlinear Analysis: Theory, Methods and Applications, 72, 4304-4306. https://doi.org/10.1016/j.na.2010.02.007 |
[16] | Liang, Y.S., Yao, K. and Xiao, W. (2008) The Fractal Dimensions of Graphs of the Weierstrass Function with the Weyl-Marchaud Fractional Derivative. Journal of Physics: Conference Se- ries, 96, Article ID: 012111. https://doi.org/10.1088/1742-6596/96/1/012111 |
[17] | Yao, K., Liang, Y.S. and Fang, J.X. (2008) The Fractal Dimensions of Graphs of the Weyl- Marchaud Fractional Derivative of the Weierstrass-Type Function. Chaos, Solitons and Frac- tals, 35, 106-115. https://doi.org/10.1016/j.chaos.2007.04.017 |
[18] | Yao, K., Liang, Y.S. and Zhang, F. (2009) On the Connection between the Order of the Fractional Derivative and the Hausdor? Dimension of a Fractal Function. Chaos, Solitons and Fractals, 41, 2538-2545. https://doi.org/10.1016/j.chaos.2008.09.053 |
[19] | 梁永顺, 苏维宜. Koch 曲线及其分数阶微积分 [J]. 数学学报, 2011, 54(2): 227-240. |
[20] | Falconer, K.J. (1990) Fractal Geometry: Mathematical Foundations and Applications. John Wiley Sons Inc., New York. |
[21] | Oldham, K.B. and Spanier, J. (1974) The Fractional Calculus. Academic Press, New York. |