全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

重载货车轮对弹性振动模态阶数对轮轨动态作用的影响
Influence of Wheelset Elastic Vibration Mode Order on Wheel-Rail Dynamic Interaction of Heavy-Haul Freight Wagon

DOI: 10.12677/DSC.2021.102012, PP. 106-119

Keywords: 货车,有限元,弹性轮对,振动模态,轮轨力
Freight Wagon
, Finite Element, Elastic Wheelset, Vibrating Modes, Wheel-Rail Forces

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究轮对弹性振动模态阶数对轮轨动态作用的影响,以国内某型30 t轴重重载货车为研究对象。首先采用有限元方法建立不同模态的弹性轮对模型,在动力学软件中进一步集成为货车刚柔耦合动力学模型。采用时域、频域以及统计最大值的方法对比分析,发现轮对一阶横弯和车轮伞形振动模态能缓和轮轨横、垂向力,与此同时一阶横、垂弯模态会产生较大的纵向蠕滑力。最后分析了不同速度下各阶模态对动力学的影响。当轮对的一阶扭转、横弯以及二阶垂弯模态被激发时,速度变化对轮轨蠕滑力影响较大。对于轮轨横、垂向作用力,当轮对发生以一阶、二阶垂弯为主的振动时,速度对轮轨横向力的影响较为明显。
To study the influence of elastic vibration mode order of wheelset on wheel-rail dynamic interaction, a 30 t axle-load wagon was taken as the research object. Firstly, the elastic models of wheelset with different vibrating modes were established by using the finite element method, which were introduced into the dynamic software to constitute the rigid-elastic coupling dynamic model of freight wagon. The time domain, frequency domain and statistical maximum analysis methods were applied. It was found that, the first-order lateral bending mode of wheelset and umbrella-type vibration mode of wheels could ease the wheel/rail lateral and vertical forces. Meanwhile, the first-order horizontal and vertical bending modes would produce larger longitudinal creep forces. Finally, the influence of different modes on the dynamics at different speeds was analyzed. As the first-order torsion, lateral bending and second-order vertical bending modes were excited, the change of velocity had great influence on the creep forces of wheelset. Comparing between the wheel-rail lateral and vertical forces, the speed change had the greater influence on the wheel-rail lateral forces when the first-order and second-order vertical bending vibration modes dominated in the wheelset.

References

[1]  韩鹏, 张卫华. 轮对结构弯曲及型面磨耗对高速列车振动性能的影响[J]. 振动与冲击, 2015, 34(5): 207-212.
[2]  Andersson, C. and Abrahamsson, T. (2000) Simulation of Interaction between a Train in General Motion and a Track. Department of Solid Mechanics, Chalmers University of Technology, G?teborg.
[3]  Andersson, C., Oscarsson, J. and Nielsen, J. (2000) Dynamic Interaction between a Flexible Vehicle and a State-Dependent Railway Track. Department of Solid Mechanics, Chalmers University of Technology, G?teborg.
[4]  Brommundt, E. (1997) A Simple Mechanism for the Polygonalization of Railway Wheels by Wear. Mechanics Research Communications, 24, 435-442.
https://doi.org/10.1016/S0093-6413(97)00047-5
[5]  李伟, 李言义, 张雄飞, 等. 地铁车辆车轮多边形的机理分析[J]. 机械工程学报, 2013, 49(18): 17-22.
[6]  杨亮亮, 罗世辉, 傅茂海, 等. 车轮状态变化对重载货车轮作用力影响[J]. 振动与冲击, 2014, 33(3): 110-116.
[7]  方翁武, 刘韦, 罗世辉, 等. 轮对多边形化对车辆动力学性能的影响[J]. 机车电传动, 2013(4): 59-62.
[8]  罗仁, 曾京, 邬平波, 戴焕云. 高速列车车轮不圆顺磨耗仿真及分析[J]. 铁道学报, 2011, 32(5): 30-36.
[9]  郭训, 郑树彬, 柴晓冬, 李立明. 基于柔性轮对的轨道车辆动力学仿真分析[J]. 测控技术, 2018, 37(8): 150-153.
[10]  李国芳, 姚永明, 丁旺才. 基于UM的车辆-轨道耦合动力学建模及仿真分析[J]. 兰州交通大学学报, 2016, 35(1): 142-146.
[11]  翟婉明. 车辆-轨道耦合动力学[M]. 第4版. 北京: 科学出版社, 2015.
[12]  刘鹏飞, 翟婉明, 王开云, 田国英. 考虑轨道弹性时机车轮对的纵向振动研究[J]. 工程力学, 2013, 30(12): 256-262.
[13]  王勇, 曾京, 张卫华. 铁路货车非线性稳定性[J]. 交通运输工程学报, 2002, 2(2): 36-40.
[14]  徐磊, 陈宪麦, 李晓健, 孟宪洪. 朔黄重载铁路轨道不平顺谱分析[J]. 中南大学学报(自然科学版), 2013, 44(12): 5147-5153.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133