全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

衬膜水稻技术对荒漠化土壤微生物多样性的修复效果研究
Research on Remediation Effect of Paddy in Film-Bottomed Sandy Land Technology on Microbial Diversity in Desertification Soil

DOI: 10.12677/AG.2021.114038, PP. 435-448

Keywords: 荒漠化修复,土壤评价,16SrDNA技术,微生物多样性,衬膜水稻
Desertification Restoration
, Soil Assessment, 16SrDNA Technology, Microbial Diversity, Paddy in Film-Bottomed Sandy Land

Full-Text   Cite this paper   Add to My Lib

Abstract:

本试验采用16SrDNA测序技术对修复前后的两种科尔沁沙地土壤微生物多样性进行比较分析,对荒漠化土壤修复效果进行评价,建立基本的数据基础,为衬膜水稻技术的推广提供依据,探索新的、合理的荒漠化土壤质量评价标准,从而促进荒漠化地区土壤生态评价系统的完善。结果表明,虽然荒漠化沙地土壤的微生物多样性高于修复后的衬膜水稻土壤,但是原有的菌群经土壤修复后会发生变化,修复技术会改变荒漠化沙地土壤的群落结构,会增加荒漠化沙地土壤优势菌种群落丰度,增加土壤菌落丰度。
The research uses 16SrDNA technology to compare and analyze the microbial diversity of desertification soil in Horqin sandy land before and after restoration. This research evaluates the effect of desertification soil restoration, establishes a basic data base, provides a basis for the popularization of paddy rice in film-bottomed sandy land technique, explores new and reasonable criteria for the evaluation of desertification soil quality, and promotes the perfection of soil ecological evaluation system in desertification areas. The results show that although the microbial diversity of desert sand soil is higher than that of the repaired by paddy rice in film-bottomed sandy land technique, the original bacteria group will change after soil repairing, and the technology will change the community structure of desertification sandy soil, increase the abundance of desertification sandy soil advantage bacteria population and increase the community richness of soil bacteria.

References

[1]  黄慧琼. 遏止全球土壤退化刻不容缓[J]. 生态经济, 2021, 37(2): 5-8.
[2]  刘佳, 刘远妹, 杜忠. 中国退化沙化草地治理研究进展[J]. 安徽农学通报, 2018, 24(21): 161-164.
[3]  张建龙. 防治土地荒漠化助力脱贫攻坚战——纪念第二十四个世界防治荒漠化和干旱日[J]. 国土绿化, 2018(6): 7-8.
[4]  王康富. 内蒙科尔沁沙地奈曼地区沙漠化土地综合整治初步研究[J]. 中国沙漠, 1989, 9(1): 33-37.
[5]  蒋德明, 刘志民, 寇振武. 科尔沁沙地荒漠化及生态恢复研究展望[J]. 应用生态学报, 2002(12): 1695-1698.
[6]  张桂英. 气候变化对科尔沁沙地水资源影响分析——以内蒙古奈曼旗为例[J]. 畜牧与饲料科学, 2018, 39(1): 56-59+71.
[7]  张雄, 山颖, 张继平. 沙地衬膜水稻施肥效应与技术研究[J]. 水土保持学报, 2006, 20(1): 139-142.
[8]  内岛善兵卫, 方桑泽. 农林、水产与气象[M]. 重庆: 重庆出版社, 1998.
[9]  松岛省三. 水稻栽培新技术[M]. 长春: 吉林人民出版社, 1987.
[10]  张婉秋. 双膜覆盖沙漠水稻种植与沙地修复技术研究[D]: [硕士学位论文]. 沈阳: 辽宁大学, 2018.
[11]  Wang, X.J. and Gong, Z.T. (1998) Assessment and Analysis of Soil Quality Changes after Eleven Years of Reclamation in Subtropical China. Geoderma, 81, 339-355.
https://doi.org/10.1016/S0016-7061(97)00109-2
[12]  Stocking, M.A. (2003) Tropical Soils and Food Security: The Next 50 Years. Science, 302, 1356-1359.
https://doi.org/10.1126/science.1088579
[13]  Huang, Q., Wang, J.L., Wang, C., et al. (2019) The 19-Years Inorganic Fertilization Increased Bacterial Diversity and Altered Bacterial Community Composition and Potential Functions in a Paddy Soil. Applied Soil Ecology, 144, 60-67.
https://doi.org/10.1016/j.apsoil.2019.07.009
[14]  Chen, J.H., Wu, Q.F., Li, S.H., et al. (2019) Diversity and Function of Soil Bacterial Communities in Response to Long-Term Intensive Management in a Subtropical Bamboo Forest. Geoderma, 354, Article ID: 113894.
https://doi.org/10.1016/j.geoderma.2019.113894
[15]  Caporaso, J.G., et al. (2011) Global Patterns of 16S rRNA Diversity at a Depth of Millions of Sequences Per-Sample. Proceedings of the National Academy of Sciences, 108, 4516-4522.
https://doi.org/10.1073/pnas.1000080107
[16]  Youssef, N., Sheik, C.S., Krumholz, L.R., Najar, F.Z., Roe, B.A. and Elshahed, M.S. (2009) Comparison of Species Richness Estimates Obtained Using Nearly Complete Fragments and Simulated Pyrosequencing-Generated Fragments in 16S rRNA Gene-Based Environmental Surveys. Applied and Environmental Microbiology, 75, 5227-5236.
https://doi.org/10.1128/AEM.00592-09
[17]  Hess, M., Sczyrba, A., Egan, R., Kim, T.W., Chokhawala, H., Schroth, G., et al. (2011) Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen. Science, 331, 463-467.
https://doi.org/10.1126/science.1200387
[18]  秦楠, 栗东芳, 杨瑞馥. 高通量测序技术及其在微生物学研究中的应用[J]. 微生物学报, 2011, 51(4): 445-457.
[19]  Fouts, D.E., Szpakowski, S., Purushe, J., Torralba, M., Waterman, R.C., et al. (2012) Next Generation Sequencing to Define Prokaryotic and Fungal Diversity in the Bovine Rumen. PLoS ONE, 7, e48289.
https://doi.org/10.1371/journal.pone.0048289
[20]  Amato, K.R., et al. (2013) Habitat Degradation Impacts Black Howler Monkey (Alouatta pigra) Gastrointestinal Microbiomes. The ISME Journal, 7, 1344-1353.
https://doi.org/10.1038/ismej.2013.16
[21]  Bates, S.T., Clemente, J.C., et al. (2013) Global Biogeography of Highly Diverse Protistan Communities in Soil. The ISME Journal, 7, 652-659.
https://doi.org/10.1038/ismej.2012.147
[22]  Lundberg, D.S., Yourstone, S., Mieczkowski, P., Jones, C.D. and Dangl, J.L. (2013) Practical Innovations for High-Throughput Amplicon Sequencing. Nature Methods, 10, 999-1002.
https://doi.org/10.1038/nmeth.2634
[23]  Caporaso, J.G., et al. (2010) QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nature Methods, 7, 335-336.
https://doi.org/10.1038/nmeth.f.303
[24]  Jost, L. (2007) Partitioning Diversity into Independent Alpha and Beta Components. Ecology, 88, 2427-2439.
https://doi.org/10.1890/06-1736.1
[25]  Oberauner, L., Zachow, C., Lackner, S., et al. (2013) The Ignored Diversity: Complex Bacterial Communities in Intensive Care Units Revealed by 16S Pyrosequencing. Scientific Reports, 3, Article No. 1413.
https://doi.org/10.1038/srep01413
[26]  Lozupone, C. and Knight, R. (2005) UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Applied and Environmental Microbiology, 71, 8228-8235.
https://doi.org/10.1128/AEM.71.12.8228-8235.2005
[27]  Lozupone, C., Lladser, M.E., Knights, D., Stombaugh, J. and Knight, R. (2011) UniFrac: An Effective Distance Metric for Microbial Community Comparison. The ISME Journal, 5, 169-172.
https://doi.org/10.1038/ismej.2010.133
[28]  Lozupone, C.A., Hamady, M., Kelley, S.T. and Knight, R. (2007) Quantitative and Qualitative Beta Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Applied and Environmental Microbiology, 73, 1576-1585.
https://doi.org/10.1128/AEM.01996-06
[29]  Wang, Y., Sheng, H.-F., et al. (2012) Comparison of the Levels of Bacterial Diversity in Freshwater, Intertidal Wetland, and Marine Sediments by Using Millions of Illumina Tags. Applied and Environmental Microbiology, 78, 8264.
https://doi.org/10.1128/AEM.01821-12
[30]  Rivas, M.N., Burton, O.T., et al. (2013) A Microbita Signature Associated with Experimental Food Allergy Promotes Allergic Sensitization and Anaphylaxis. The Journal of Allergy and Clinical Immunology, 131, 201-212.
https://doi.org/10.1016/j.jaci.2012.10.026
[31]  Noval Rivas, M., Burton, O.T., Wise, P., Zhang, Y.Q., Hobson, S.A., Garcia Lloret, M., et al. (2013) A Microbiota Signature Associated with Experimental Food Allergy Promotes Allergic Sensitization and Anaphylaxis. The Journal of Allergy and Clinical Immunology, 131, 201-212.
https://doi.org/10.1016/j.jaci.2012.10.026
[32]  林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能[J]. 土壤学报, 2008(5): 892-900.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133