全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

零价铁类芬顿体系氧化降解有机物的研究进展
Research Progress of Organic Compounds Degradation by Fenton-Like System Based on Zero-Valent Iron

DOI: 10.12677/AG.2021.114037, PP. 426-434

Keywords: 零价铁,芬顿反应,氧化作用
Zero-Valent Iron
, Fenton Reaction, Oxidation

Full-Text   Cite this paper   Add to My Lib

Abstract:

地下水污染日益严重,探索适应地下水环境的高效污染去除技术迫在眉睫。纳米零价铁(nZVI)作为一种绿色原位降解污染物的新兴环境友好型材料,已被广泛的应用于有机氯化物、重金属、有机染料等污染物的去除。近年来,针对nZVI的不断研究发现其可构成类芬顿体系,可高效氧化降解有机污染物,使其降解为无毒无害的无机小分子。基于近年来零价铁构成类芬顿体系降解有机污染物的研究过程,介绍了ZVI/O2体系、ZVI/H2O2体系、以及nZVI/H2O2体系处理有机污染物的效果和机理,并对未来基于零价铁的类芬顿体系处理有机污染物的发展前景进行了展望。
Groundwater pollution is becoming more and more serious, so it is urgent to explore efficient pollution removal technology to adapt to groundwater environment. Nanoscale zero-valent iron (nZVI), as a new environmental friendly material for in-situ pollutants degradation, has been widely used in the removal of organic chlorides, heavy metals, organic dyes and other pollutants. In recent years, continuous research on nZVI has shown that it can form Fenton-like system, effi-ciently remove organic pollutants, and degrade into non-toxic and harmless inorganic small mo-lecules. Based on the development process of Fenton-like system composed of zero-valent iron for the degradation of organic pollutants, the effects and mechanisms of ZVI/O2 system, ZVI/H2O2 system and nZVI/H2O2 system for the treatment of organic pollutants are introduced, and the development prospect of Fenton-like system based on zero-valent iron for the treatment of organic pollutants in the future is prospected.

References

[1]  Stieber, M., Putschew, A. and Jekel, M. (2011) Treatment of Pharmaceuticals and Diagnostic Agents Using Zero-Valent Iron-Kinetic Studies and Assessment of Transformation Products Assay. Environmental Science and Technology, 45, 4944-4950.
https://doi.org/10.1021/es200034j
[2]  Kim, D.-H., Kim, J. and Choi, W. (2011) Effect of Magnetic Field on the Zero Valent Iron Induced Oxidation Reaction. Journal of Hazardous Materials, 192, 928-931.
https://doi.org/10.1016/j.jhazmat.2011.05.075
[3]  Johnson, T.L., Scherer, M.M. and Tratnyek, P.G. (1996) Kinetics of Halogenated Organic Compound Degradation by Iron Metal. Environmental Science and Technology, 30, 2634-2640.
https://doi.org/10.1021/es9600901
[4]  Zhou, T., Lu, X., Wang, J., et al. (2009) Rapid Decolorization and Mineralization of Simulated Textile Wastewater in a Heterogeneous Fenton Like System with/without External Energy. Journal of Hazardous Materials, 165, 193-199.
https://doi.org/10.1016/j.jhazmat.2008.09.100
[5]  Shafieiyoun, S., Ebadi, T. and Nikazar, M. (2012) Treatment of Landfill Leachate by Fenton Process with Nano Sized Zero Valent Iron Particles. International Journal of Environmental Research, 6, 119-128.
[6]  Mackenzie, P.D., Horney, D.P. and Sivavec, T.M. (1999) Mineral Precipitation and Porosity Losses in Granular Iron Columns. Journal of Hazardous Materials, 68, 1-17.
https://doi.org/10.1016/S0304-3894(99)00029-1
[7]  Joo, S.H., Feitz, A.J., Sedlak, D.L. and Waite, T.D. (2005) Quantification of the Oxidizing Capacity of Nanoparticulate Zero-Valent Iron. Environmental Science and Technology, 39, 1263-1268.
https://doi.org/10.1021/es048983d
[8]  Leupin, O.X. and Hug, S.J. (2005) Oxidation and Removal of Arsenic (III) from Aerated Groundwater by Filtration through Sand and Zero-Valent Iron. Water Research, 39, 1729-1740.
https://doi.org/10.1016/j.watres.2005.02.012
[9]  Joo, S.H., Feitz, A.J. and Waite, T.D. (2004) Oxidative Degradation of the Carbothioate Herbicide, Molinate, Using Nanoscale Zero-Valent Iron. Environmental Science and Technology, 38, 2242-2247.
https://doi.org/10.1021/es035157g
[10]  Tang, W.Z. and Chen, R.Z. (1996) Decolorization Kinetics and Mechanisms of Commercial Dyes by H2O2/Iron Powder System. Chemosphere, 32, 947-958.
https://doi.org/10.1016/0045-6535(95)00358-4
[11]  Takemura, Y., Seno-O, K., Mukai, T. and Suzuki, M. (1994) Decomposing Organic Chlorine Compounds in Dry Cleaning Wastewater by Fenton’s Reaction on Reticulated Iron. Water Science and Technology, 30, 129-137.
https://doi.org/10.2166/wst.1994.0082
[12]  Bergendahl, J.A. and Thies, T.P. (2004) Fenton’s Oxidation of MTBE with Zero-Valent Iron. Water Research, 38, 327-334.
https://doi.org/10.1016/j.watres.2003.10.003
[13]  Boussahel, R., Harik, D., Mammar, M., et al. (2007) Degradation of Obsolete DDT by Fenton Oxidation with Zero-Valent Iron. Desalination, 206, 369-372.
https://doi.org/10.1016/j.desal.2006.04.059
[14]  Shen, J., Ou, C., Zhou, Z., et al. (2013) Pretreatment of 2,4-Dinitroanisole (DNAN) Producing Wastewater Using a Combined Zero-Valent Iron (ZVI) Reduction and Fenton Oxidation Process. Journal of Hazardous Materials, 260, 993-1000.
https://doi.org/10.1016/j.jhazmat.2013.07.003
[15]  Kallel, M., Belaid, C., Boussahel, R., et al. (2009) Olive Mill Wastewater Degradation by Fenton Oxidation with Zero-Valent Iron and Hydrogen Peroxide. Journal of Hazardous Materials, 163, 550-554.
https://doi.org/10.1016/j.jhazmat.2008.07.006
[16]  周涛, 陆晓华, 李耀中. 4-CP在零价铁/H2O2体系中的降解研究[J]. 环境科学与技术, 2009, 32(7): 60-63.
[17]  刘建国. “零价铁-零价铁Fenton”耦合体系中硝基芳香族化合物的选择性脱除及机制研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2016.
[18]  杨世迎, 任腾飞, 张艺萱, 等. 水环境中ZVI/氧化剂体系及其电子迁移作用机制[J]. 化学进展, 2017, 29(4): 388-399.
[19]  Ritter, K., Odziemkowski, M.S., Simpgraga, R., et al. (2003) An in Situ Study of the Effect of Nitrate on the Reduction of Trichloroethylene by Granular Iron. Journal of Contaminant Hydrology, 65, 121-136.
https://doi.org/10.1016/S0169-7722(02)00234-6
[20]  郑春苗, Bennett, G.D. 地下水污染物迁移模拟[M]. 北京: 高等教育出版社, 2009.
[21]  童玲, 郑西来, 李梅, 等. 土壤对苯系物的吸附行为研究[J]. 西安建筑科技大学学报:自然科学版, 2007, 39(6): 856-861.
[22]  王威. 浅层地下水中石油类特征污染物迁移转化机理研究[D]: [博士学位论文]. 长春: 吉林大学, 2012.
[23]  王斌, 邓述波, 黄俊, 等. 我国新兴污染物环境风险评价与控制研究进展[J]. 环境化学, 2013, 32(7): 1129-1136.
[24]  Liang, W., Dai, C., Zhou, X. and Zhang, Y. (2014) Application of Zero-Valent Iron Nanoparticles for the Removal of Aqueous Zinc Ions under Various Experimental Conditions. PLoS ONE, 9, e85686.
https://doi.org/10.1371/journal.pone.0085686
[25]  Hwang, Y., Mines, P.D., Jakobsen, M.H. and Andersen, H.R. (2015) Simple Colorimetric Assay for Dehalogenation Reactivity of Nanoscale Zero-Valent Iron Using 4-Chlorophenol. Applied Catalysis B: Environmental, 166-167, 18-24.
https://doi.org/10.1016/j.apcatb.2014.10.059
[26]  Li, Y., Cheng, W., Sheng, G., et al. (2015) Synergetic Effect of a Pillared Bentonite Support on SE(VI) Removal by Nanoscale Zero Valent Iron. Applied Catalysis B: Environmental, 174-175, 329-335.
https://doi.org/10.1016/j.apcatb.2015.03.025
[27]  Li, S., Wang, W., Yan, W. and Zhang, W. (2014) Nanoscale Ze-ro-Valent Iron (nZVI) for the Treatment of Concentrated Cu(II) Wastewater: A Field Demonstration. Environmental Science: Processes & Impacts, 16, 524-533.
https://doi.org/10.1039/C3EM00578J
[28]  Liu, T., Wang, Z.-L., Zhao, L. and Yang, X. (2012) Enhanced Chito-san/Fe0-Nanoparticles Beads for Hexavalent Chromium Removal from Wastewater. Chemical Engineering Journal, 189-190, 196-202.
https://doi.org/10.1016/j.cej.2012.02.056
[29]  Klimkova, S., Cernik, M., Lacinova, L., et al. (2011) Zero-Valent Iron Nanoparticles in Treatment of Acid Mine Water from in Situ Uranium Leaching. Chemosphere, 82, 1178-1184.
https://doi.org/10.1016/j.chemosphere.2010.11.075
[30]  Ambashta, R.D., Repo, E. and Sillanp??, M. (2011) Degradation of Tributyl Phosphate Using Nanopowders of Iron and Iron-Nickel under the Influence of a Static Magnetic Field. Industrial & Engineering Chemistry Research, 50, 11771-11777.
https://doi.org/10.1021/ie102121e
[31]  Naderpour, H., Noroozifar, M. and Khorasani-Motlagh, M. (2013) Photodegradation of Methyl Orange Catalyzed by Nanoscale Zerovalent Iron Particles Supported on Natural Zeolite. Journal of the Iranian Chemical Society, 10, 471-479.
https://doi.org/10.1007/s13738-012-0181-5
[32]  Fang, Z., Chen, J., Qiu, X., et al. (2011) Effective Removal of Antibiotic Metronidazole from Water by Nanoscale Zero-Valent Iron Particles. Desalination, 268, 60-67.
https://doi.org/10.1016/j.desal.2010.09.051
[33]  Fan, J., Guo, Y., Wang, J., et al. (2009) Rapid Decolorization of Azo Dye Methyl Orange in Aqueous Solution by Nanoscale Zerovalent Iron Particles. Journal of Hazardous Materials, 166, 904-910.
https://doi.org/10.1016/j.jhazmat.2008.11.091
[34]  Elliott, D.W., Lien, H.-L. and Zhang, W.-X. (2009) Degradation of Lindane by Zero-Valent Iron Nanoparticles. Journal of Environmental Engineering, 135, 317-324.
https://doi.org/10.1061/(ASCE)0733-9372(2009)135:5(317)
[35]  秦小凤, 曹嘉真, 汪小莉, 等. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 126-133.
[36]  阚连宝, 刘泽. 纳米零价铁制备与应用的研究进展[J]. 环境科学与技术, 2019, 42(6): 215-223.
[37]  Cho, D.-W., Song, H., Schwartz, F.W., et al. (2015) The Role of Magnetite Nanoparticles in the Reduction of Nitrate in Groundwater by Zero-Valent Iron. Chemosphere, 125, 41-49.
https://doi.org/10.1016/j.chemosphere.2015.01.019
[38]  Tan, L., Lu, S., Fang, Z., et al. (2017) Enhanced Reductive Debromination and Subsequent Oxidative Ring-Opening of Decabromodiphenyl Ether by Integrated Catalyst of nZVI Supported on Magnetic FeO Nanoparticles. Applied Catalysis B: Environmental, 200, 200-210.
https://doi.org/10.1016/j.apcatb.2016.07.005
[39]  Diao, Z., Xu, X., Jiang, D., et al. (2016) Bentonite-Supported Nanoscale Zero-Valent Iron/Persulfate System for the Simultaneous Removal of Cr (VI) and Phenol from Aqueous Solutions. Chemical Engineering Journal, 302, 213-222.
https://doi.org/10.1016/j.cej.2016.05.062
[40]  Moon, B.-H., Park, Y.-B. and Park, K.-H. (2011) Fenton Oxidation of Orange II by Pre-Reduction Using Nanoscale Zero-Valent Iron. Desalination, 268, 249-252.
https://doi.org/10.1016/j.desal.2010.10.036
[41]  Shirazi, E., Torabian, A. and Nabi-Bidhendi, G. (2013) Carbamazepine Removal from Groundwater: Effectiveness of the TiO2/UV, Nanoparticulate Zero-Valent Iron, and Fenton (NZVI/H2O2) Processes. CLEAN—Soil, Air, Water, 41, 1062-1072.
https://doi.org/10.1002/clen.201200222
[42]  Yao, H., Hu, S., Wu, Y. and Fan, L. (2019) The Synergetic Effects in a Fenton-Like System Catalyzed by Nano Zero-Valent Iron (nZVI). Polish Journal of Environmental Studies, 28, 2491-2499.
https://doi.org/10.15244/pjoes/91939
[43]  林正锋, 陈艳, 黄圣南. 基于纳米零价铁的类芬顿体系降解土霉素的研究[J]. 化学工程师, 2017, 266(11): 38-44.
[44]  Xu, L. and Wang, J. (2011) A Heterogeneous Fenton-Like System with Nanoparticulate Zero-Valent Iron for Removal of 4-Chloro-3-methyl Phenol. Journal of Hazardous Materials, 186, 256-264.
https://doi.org/10.1016/j.jhazmat.2010.10.116
[45]  易云强, 方战强. 纳米零价铁-双氧水协同提升甲硝唑矿化率的研究[J]. 华南师范大学学报(自然科学版), 2018, 50(1): 28-32.
[46]  Liao, C.-J., Chung, T.-L., Chen, W.-L. and Kuo, S.-L. (2007) Treatment of Pentachlorophenol-Contaminated Soil Using Nano-Scale Zero-Valent Iron with Hydrogen Peroxide. Journal of Molecular Catalysis A: Chemical, 265, 189-194.
https://doi.org/10.1016/j.molcata.2006.09.050
[47]  张思海. 纳米零价铁的合成及其处理Cr(VI)的性能和机理研究[D]: [硕士学位论文]. 南昌: 南昌航空大学, 2018.
[48]  Liu, A., Liu, J., Han, J., et al. (2017) Evolution of Nanoscale Ze-ro-Valent Iron (nZVI) in Water: Microscopic and Spectroscopic Evidence on the Formation of Nano- and Micro-Structured Iron Oxides. Journal of Hazardous Materials, 322, 129-135.
https://doi.org/10.1016/j.jhazmat.2015.12.070
[49]  穆毅, 贾法龙, 艾智慧, 等. 纳米零价铁活化分子氧原理及降解有机污染物性能增强策略[J]. 化学学报, 2017, 75(6): 538-543.
[50]  Mylon, S.E., Sun, Q. and Waite, T.D. (2010) Process Optimization in Use of Zero Valent Iron Nanoparticles for Oxidative Transformations. Chemosphere, 81, 127-131.
https://doi.org/10.1016/j.chemosphere.2010.06.045
[51]  Liu, A., Liu, J. and Zhang, W.X. (2015) Transformation and Composition Evolution of Nanoscale Zero Valent Iron (nZVI) Synthesized by Borohydride Reduction in Static Water. Chemosphere, 119, 1068-1074.
https://doi.org/10.1016/j.chemosphere.2014.09.026

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133