全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

离散线性多时滞系统稳定的充分必要条件
A Sufficient and Necessary Condition for Discrete LTI System with Multi-Delays

DOI: 10.12677/DSC.2021.102013, PP. 120-128

Keywords: 线性时滞系统,Lyapunov矩阵不等式,二次型,谱半径,强稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

时滞线性离散系统\"\"的稳定性研究,当N > 2时是一个具有挑战性的难题。本文使用离散Lyapunov矩阵不等式结合复域空间二次型函数,利用二次型符号及连续函数的特性将稳定性计问题转换成多变量的极值问题,获得了时滞线性离散系统强稳定的充分必要条件,且表达形式较现有成果更简洁,具有较低的计算复杂度,较之现有计算复杂度n2,论文只需在n规模上进行。文末借助经典实例,通过与现有方法的对比,进一步论证了本文结论的可行性和有效性。
The stability of linear discrete system \"\" is a challenge. By combing the discrete Lyapunov matrix inequality with the time-domain spatial quadratic function, a novel sufficient and necessary condition for strong stability which is more concise than the existing results is obtained. It transfers the problem of spectral radius into that of judging sign of a quadric form by using the properties of continuous function with multi-variables. Finally, the feasibility and effectiveness of the proposed method are further verified by comparing with the existing methods with the classical examples.

References

[1]  Hale, J.K., Verduyn, L.S.M. and Hale, J.K. (1993) Introduction to Functional Differential Equations. Springer, New York.
https://doi.org/10.1007/978-1-4612-4342-7_1
[2]  Henrion, D., Vyhlidal, T., Zitek, P., et al. (2010) Strong Stability of Neutral Equations with an Arbitrary Delay Dependency Structure. SIAM Journal on Control and Optimization, 48, 763-786.
https://doi.org/10.1137/080724940
[3]  Gu, K. (2010) Stability Problem of Systems with Multiple Delay Channels. Automatica, 46, 743-751.
https://doi.org/10.1016/j.automatica.2010.01.028
[4]  Gu, K., Gong, S.W. and Yeih, W. (2012) A Review of Some Subtleties of Practical Relevance for Time-Delay Systems of Neutral Type. ISRN Applied Mathematics, 2012, Article ID: 725783.
https://doi.org/10.5402/2012/725783
[5]  Zhou, B. (2018) On Strong Stability and Robust Strong Stability of Linear Difference Equations with Two Delays. Automatica, 110, Article ID: 108610.
https://doi.org/10.1016/j.automatica.2019.108610
[6]  Souza, F.D.O., Oliveira, M.C.D. and Palhares, R.M. (2018) A Simple Necessary and Sufficient LMI Condition for the Strong Delay-Independent Stability of LTI Systems with Single Delay. Automatica, 89, 407-410.
https://doi.org/10.1016/j.automatica.2017.11.006
[7]  Bachelier, O., Paszke, W., Yeganefar, N., et al. (2016) LMI Stability Conditions for 2D Roesser Models. IEEE Transactions on Automatic Control, 61, 766-770.
https://doi.org/10.1109/TAC.2015.2444051
[8]  de Oliveira Souza, F., de Oliveira, M.C. and Palhares, R.M. (2018) A Simple Necessary and Sufficient LMI Condition for the Strong Delay-Independent Stability of LTI Systems with Single Delay. Automatica, 89, 407-410.
https://doi.org/10.1016/j.automatica.2017.11.006
[9]  Briat, C. (2015) Linear Parameter-Varying and Time-Delay Systems: Analysis, Observation, Filtering & Control. Springer, Berlin.
[10]  Chen, J., Lu, J. and Xu, S. (2016) Summation Inequality and Its Application to Stability Analysis for Time-Delay Systems. IET Control Theory & Applications, 10, 391-395.
https://doi.org/10.1049/iet-cta.2015.0576
[11]  邵锡军, 杨成梧. 线性离散时滞系统的鲁棒稳定性分析[J]. 系统工程与电子技术, 2001, 23(12): 77-79.
[12]  Wu, M., Peng, C., Zhang, J., et al. (2017) Further Results on Delay-Dependent Stability Criteria of Discrete Systems with an Interval Time-Varying Delay. Journal of the Franklin Institute, 354, 4955-4965.
https://doi.org/10.1016/j.jfranklin.2017.05.005
[13]  Nam, P.T., Pathirana, P.N. and Trinh, H. (2015) Discrete Wirtinger-Based Inequality and Its Application. Journal of the Franklin Institute, 352, 1893-1905.
https://doi.org/10.1016/j.jfranklin.2015.02.004
[14]  Kwon, O.M., Park, M.J., Park, J.H., et al. (2013) Improved Delay-Dependent Stability Criteria for Discrete-Time Systems with Time-Varying Delays. Circuits Systems & Signal Processing, 32, 1949-1962.
https://doi.org/10.1007/s00034-012-9543-6
[15]  Ebihara, Y., Ito, Y. and Hagiwara, T. (2006) Exact Stability Analysis of 2-D Systems Using LMIs. IEEE Transactions on Automatic Control, 51, 1509-1513.
https://doi.org/10.1109/TAC.2006.880789
[16]  Stankovi?, N., Olaru, S. and Niculescu, S.-I. (2014) Further Remarks on Asymptotic Stability and Set Invariance for Linear Delay-Difference Equations. Automatica, 50, 2191-2195.
https://doi.org/10.1016/j.automatica.2014.05.019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133