全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cr5Te8单晶的结构重定和低温拉曼光谱
Structure Redetermination and Low Temperature Raman of Cr5Te8 Single Crystal

DOI: 10.12677/APP.2021.114023, PP. 197-203

Keywords: Cr5Te8合金,单晶生长,晶体结构,低温拉曼
Cr5Te8 Alloy
, Single Crystal Growth, Crystal Structure, Low Temperature Raman

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用化学气相传输(CVT)法生长了非超晶格Cr5Te8单晶。通过单晶X射线衍射重新确定了晶体结构,弥补了之前这一材料晶体结构来自粉末X射线衍射数据精修的不足。本文中的Cr5Te8属于P3m1空间群,晶胞参数为a = 3.8989 ?,c = 5.9911 ?。X射线能谱(EDS)表明Cr和Te的比例分别为38.5%和61.5%。用四电极法测量的电阻表明,在20 K左右有一个异常趋势。然而,低温下的拉曼光谱直到8 K都没有明显的变化,这表明Cr5Te8在低温下有较高的结构稳定性,即磁性或电学性质都与低温下的晶体结构变化无关。考虑到前人报道的20 K左右的磁性异常,Cr5Te8晶体有望成为一种潜在的磁电耦合材料。
Single crystal Cr5Te8 with basic cell was grown by the chemical vapor transport (CVT) method. The crystal structure was redetermined by single crystal X-ray diffraction. The Cr5Te8 in this work was crystallized in space group P3m1 with a = 3.8989 ? and c = 5.9911 ?. Typical energy-dispersive X-ray spectra (EDS) suggesting the ratio of Cr and Te is around 38.5% and 61.5%. The electrical resistivity measurements performed on the four types of anodes suggested an abnormal trend around 20 K. However, the Raman spectroscopy at low temperature don’t show any obvious changes until 8 K, which revealing any magnetic or electrical properties are independent of structural changes under low temperature. The Cr5Te8 crystal was expected as a potential magnetoelectric coupling material, considering the magnetic transition around 20 K.

References

[1]  Dickinson, R.G. and Pauling, L.J.J (1923) The Crystal Structure of Molybdenite. Journal of the American Chemical Society, 45, 1466-1471.
https://doi.org/10.1021/ja01659a020
[2]  Wang, Y., Yan, J., Li, J., Wang, S., Song, M., Song, J., Li, Z., Chen, K., Qin, Y. and Ling, L.J. (2019) Magnetic Anisotropy and Topological Hall Effect in the Trigonal Chromium Tellurides Cr5Te8. Physical Review B, 100, Article ID: 024434.
https://doi.org/10.1103/PhysRevB.100.024434
[3]  Liu, Y., Abeykoon, M., Stavitski, E., Attenkofer, K. and Petrovic, C.J. (2019) Magnetic Anisotropy and Entropy Change in Trigonal Cr5Te8. Physical Review B, 100, Article ID: 245114.
https://doi.org/10.1103/PhysRevB.100.245114
[4]  Wen, Y., Liu, Z., Zhang, Y., Xia, C., Zhai, B., Zhang, X., et al. (2020) Tunable Room-Temperature Ferromagnetism in Two-Dimensional Cr2Te3. Nano Letters, 20, 3130-3139.
https://doi.org/10.1021/acs.nanolett.9b05128
[5]  McGuire, M.A., Garlea, V.O., Santosh, K., Cooper, V.R., Yan, J., Cao, H. and Sales, B.C.J. (2017) Antiferromagnetism in the Van Der Waals Layered Spin-Lozenge Semiconductor CrTe3. Physical Review B, 95, Article ID: 144421.
https://doi.org/10.1103/PhysRevB.95.144421
[6]  Liu, Y. and Petrovic, C. (2018) Anomalous Hall Effect in the Trigonal Cr5Te8 Single Crystal. Physical Review B, 98, Article ID: 195122.
https://doi.org/10.1103/PhysRevB.98.195122
[7]  Lasek, K., Coelho, P.M., Zberecki, K., Xin, Y., Kolekar, S.K., Li, J. and Batzill, M.J. (2020) Molecular Beam Epitaxy of Transition Metal (Ti-, V-, and Cr-) Tellurides: From Monolayer Ditellurides to Multilayer Self-Intercalation Compounds. ACS Nano, 14, 8473-8484.
https://doi.org/10.1021/acsnano.0c02712
[8]  Zhao, D., Zhang, L., Malik, I.A., Liao, M., Cui, W., Cai, X., et al. (2018) Observation of Unconventional Anomalous Hall Effect in Epitaxial CrTe Thin Films. Nano Research, 11, 3116-3121.
https://doi.org/10.1007/s12274-017-1913-8
[9]  Hayashi, A., Imada, K., Inoue, K., Ueda, Y. and Kosuge, K. (1986) Phase Diagram of (M [x] M1-[x])3 Se4 (0≤X≤ l)(M, M’= 3d-transition metal)(Commemoration Issue Dedicated to Professor Toshio TAKADA On the Occasion of His Retirement). Bulletin of the Institute for Chemical Research, Kyoto University, 64, 186-206.
[10]  Ueda, Y. and Ohtani, T.J. (2017) Mechanochemical Synthesis, Vacancy-Ordered Structures and Low-Dimensional Properties of Transition Metal Chalcogenides. In: Dronskowski, R., Kikkawa, S. and Stein, A., Eds., Handbook of Solid State Chemistry, Wiley-VCH, 383-433.
https://doi.org/10.1002/9783527691036.hsscvol1010
[11]  Freitas, D.C., Weht, R., Sulpice, A., Remenyi, G., Strobel, P., Gay, F., Marcus, J. and Nú?ez-Regueiro, M.J. (2015) Ferromagnetism in Layered Metastable 1T-CrTe2. Journal of Physics: Condensed Matter, 27, Article ID: 176002.
https://doi.org/10.1088/0953-8984/27/17/176002
[12]  Dijkstra, J., Weitering, H., Van Bruggen, C., Haas, C. and De Groot, R.J. (1989) Band-Structure Calculations, and Magnetic and Transport Properties of Ferromagnetic Chromium Tellurides (CrTe, Cr3Te4, Cr2Te3). Journal of Physics: Condensed Matter, 1, Article No. 9141.
https://doi.org/10.1088/0953-8984/1/46/008
[13]  Yamaguchi, M. and Hashimoto, T.J. (1972) Magnetic Properties of Cr3Te4 in Ferromagnetic Region. Journal of the Physical Society of Japan, 32, 635-638.
https://doi.org/10.1143/JPSJ.32.635
[14]  Wang, F., Du, J., Sun, F., Sabirianov, R.F., Al-Aqtash, N., Sengupta, D., Zeng, H. and Xu, X.J. (2018) Ferromagnetic Cr2Te3 Nanorods with Ultrahigh Coercivity. Nanoscale, 10, 11028-11033.
https://doi.org/10.1039/C8NR02272K
[15]  Kanomata, T., Sugawara, Y., Kamishima, K., Mitamura, H., Goto, T., Ohta, S. and Kaneko, T.J. (1998) Pressure Effect on Spontaneous Magnetization of Cr2Te3 and Cr5Te8. Journal of Magnetism and Magnetic Materials, 177-178, 589-590.
https://doi.org/10.1016/S0304-8853(97)00370-3
[16]  Tsuji, T. and Ishida, K. (1995) Heat Capacities of Cr5Te8 and Ni5Te8 from 325 to 930 K. Thermochimica Acta, 253, 11-18.
https://doi.org/10.1016/0040-6031(94)02022-G
[17]  Herbert, I., Kurt, L. and Komarek, K.O. (1983) Transition Metal-Chalcogen Systems VIII: The CrTe Phase Diagram. Journal of the Less Common Metals, 92, 265-282.
https://doi.org/10.1016/0022-5088(83)90493-9
[18]  Bensch, W., Helmer, O. and N?ther, C. (1997) Determination and Redetermination of the Crystal Structures of Chromium Tellurides in the Composition Range CrTe1.56-CrTe1.67: Trigonal Di-Chromium Tri-Telluride Cr2Te3, Monoclinic Penta-Chromium Octa-Telluride Cr5Te8, and the Five Layer Superstructure of Trigonal Penta-Chromium Octa-Telluride Cr5Te8. Materials Research Bulletin, 32, 305-318.
https://doi.org/10.1016/S0025-5408(96)00194-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133