全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

软土地区无工作井大尺度盾构掘进抗浮技术模拟分析
Simulation Analysis of Anti-Floating Technologies for Large-Scale Shield Tunneling without Working Shaft in Soft Soil

DOI: 10.12677/HJCE.2021.103020, PP. 177-187

Keywords: 软土盾构,隧道抗浮,数值模拟
Soft Soil Shield
, Tunnel Anti-Floating, Numerical Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

GPST盾构隧道是盾构机直接由地面出发和接收的新型工法,在盾构始发和接收阶段,难免会经历不同浅覆土工况。地面堆载、抗浮板、隧道内压重等抗浮技术是防止隧道上浮的有效技术措施。本文借助Abaqus有限元数值模拟软件,揭示了不同抗浮技术对隧道上浮的影响规律,并针对上海软土地区工况,给出了不同埋深比下隧道抗浮措施的建议。研究结果表明,软土地区无工作井大直径盾构掘进时,地面堆载的抗浮作用明显小于隧道内压重,且同等压重条件下,隧道内压重产生的上浮量减小百分比约为地面堆载的3倍。
GPST shield tunnel is a new type of construction method in which the shield machine directly starts and receives from the ground. It is inevitable that it will experience different shallow overburden conditions during the initial and receiving stages of the shield. Technologies such as ground loading, anti-floating plates, and pressure in the tunnel are effective technical measures to prevent the tunnel from floating. In this paper, with the aid of Abaqus finite element numerical simulation software, the influence of different anti-floating measures on the floating of the tunnel is investigated. According to the working conditions of the soft soil area in Shanghai, suggestions for anti-floating measures of the tunnel under different buried depth ratios are given. The research results show that when large-diameter shield tunneling in soft soil areas, the anti-floating effect of the ground load is significantly less than the pressure in the tunnel, and under the same weight, the reduction in the amount of floating caused by the pressure in the tunnel is about three times of the ground loading.

References

[1]  韩煊, 李宁, J. R. Standing. Peck公式在我国隧道施工地面变形预测中的适用性分析[J]. 岩土力学, 2007(1): 23-28+35.
[2]  张社荣, 田新星, 王刚, 崔溦. 软土地区盾构法隧道施工三维数值模拟[J]. 地下空间与工程学报, 2012, 8(4): 807-814.
[3]  杨方勤, 段创峰, 吴华柒, 袁勇. 上海长江隧道抗浮模型试验与理论研究[J]. 地下空间与工程学报, 2010, 6(3): 454-459.
[4]  曹文宏, 杨志豪, 李冬梅. 盾构隧道上浮的力学机理研究[J]. 地下工程与隧道, 2011(4): 1-6+60.
[5]  叶飞, 朱合华, 丁文其, 杨宏伟. 施工期盾构隧道上浮机理与控制对策分析[J]. 同济大学学报(自然科学版), 2008(6): 738-743.
[6]  吴惠明, 滕丽, 于亚磊, 叶冠林. 地面出入式盾构隧道稳定性控制措施有效性研究[J]. 现代隧道技术, 2014, 51(5): 61-65.
[7]  吴惠明, 汤漩. 负覆土隧道结构变形分析及控制[J]. 现代隧道技术, 2014, 51(3): 49-56.
[8]  金浩. 浅覆土对水下盾构隧道管片上浮影响及损伤诊断技术研究[D]: [硕士学位论文]. 长沙: 中南大学, 2014.
[9]  王其炎, 杨建辉, 薛永利, 陈自海. 盾构在软土地层掘进过程中的管片上浮研究[J]. 现代隧道技术, 2014, 51(1): 144-152.
[10]  Liu, C., Zhang, Z.X., Kwok, C.Y., Jiang, H.Q. and Teng, L. (2017) Ground Responses to Tunneling in Soft Soil Using the URUP Method. Journal of Geotechnical and Geoenvironmental Engineering, 143, No. 7.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001695
[11]  Zhang, Z.X., Liu, C., Huang, X., Kwok, C.Y. and Teng, L. (2016) Three-Dimensional Finite-Element Analysis on Ground Responses during Twin-Tunnel Construction Using the URUP Method. Tunnelling and Underground Space Technology, 58, 133-146.
https://doi.org/10.1016/j.tust.2016.05.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133