全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

橡胶草幼叶与成熟叶片转录组比较分析
Comparative Transcriptome Analysis of Young and Mature Leaves of Taraxacum kok-saghyz L. Rodin

DOI: 10.12677/BR.2021.102013, PP. 85-96

Keywords: 橡胶草,转录组,差异基因,功能分析,次生代谢产物
Taraxacum kok-saghyz L. Rodin
, Transcriptome, Differential Gene, Functional Analysis, Secondary Metabolite

Full-Text   Cite this paper   Add to My Lib

Abstract:

橡胶草(Taraxacum kok-saghyz L. Rodin)是天然橡胶产业最有发展潜力的新型产胶替代作物。除产胶之外它还能够产生菊粉等大量的次生代谢产物。为了进一步阐明橡胶草叶片中次生代谢产物合成的分子机制,本研究以新疆橡胶草幼叶和成熟叶片为材料,采用华大BGISEQ-500平台进行转录组测序,分别得到165,935,798条和166,460,570条的clean reads,并注释到Nr、KOG、KEGG、InterPro和Swiss-Prot数据库中。Unigene共有58,402条被注释结果,通过差异基因表达分析、GO分类和KEGG代谢通路分析,代谢通路分属于136类,其中包括倍萜类化合物、核糖体、黄酮醇和花青素等次生代谢物质生物合成,最后进行差异基因的蛋白互作分析。该研究结果对橡胶草叶片药用活性成分生物的合成与代谢、关键酶基因的克隆以及分子标记开发等研究有一定的参考价值。
Rubber grass (Taraxacum kok-saghyz L. Rodin) is the most promising rubber-producing alternative crop for new natural rubber. It can biosynthesize large amounts of secondary metabolites such as inulin. In order to further clarify the molecular mechanism of secondary metabolite biosynthesis in rubber grass leaves, this study used young and mature leaves of Xinjiang rubber grass as materials, and used the BGISEQ-500 platform for transcriptome sequencing to obtain 165,935,798 and 166,460,570 clean reads, respectively. Annotate to Nr, KOG, KEGG, InterPro and Swiss-Prot databases. Unigene has a total of 58,402 annotated results, and then performed differential gene expression analysis, GO classification, and KEGG metabolic pathway analysis. The metabolic pathways are classified into 136 categories, including the synthesis of sesquiterpenoids, ribosomes, flavonols, anthocyanins, etc., biosynthesis of secondary metabolites, and finally protein-protein interaction analysis of differential genes. The results of this study have certain reference value for the research on the biosynthesis and metabolism of medicinal active ingredients in rubber grass leaves, the cloning of key enzyme genes, and the development of molecular markers.

References

[1]  罗士苇, 冯午, 吴相钰. 橡胶草的研究: 部分I. 新疆产橡胶草的形态观察[J]. 中国科学, 1951, 2(3): 373-379.
[2]  Iaffaldano, B., Cardina, J. and Cornish, K. (2018) Hybridization Potential between the Rubber Dandelion Taraxacum kok-saghyz and Common Dandelion Taraxacum officinale. Ecosphere, 9, e02115.
https://doi.org/10.1002/ecs2.2115
[3]  谢全亮, 李鸿彬, 王旭初. 橡胶草90年来主要研究成果及最新研究进展[J]. 植物科学学报, 2019, 37(3): 404-412.
[4]  Luo, Z., Iaffaldano, B.J., Zhuang, X., et al. (2017) Analysis of the First Taraxacum kok-saghyz Transcriptome Reveals Potential Rubber Yield Related SNPs. Scientific Reports, 7, Article No. 9939.
https://doi.org/10.1038/s41598-017-09034-2
[5]  Cornish, K. (2001) Biochemistry of Natural Rubber, a Vital Raw Material, Emphasizing Biosynthetic Rate, Molecular Weight and Compartmentalization, in Evolutionarily Divergent Plant Species. Natural Product Reports, 18, 182-189.
https://doi.org/10.1039/a902191d
[6]  Cao, X.W., Yan, J., Lei, J.L., et al. (2017) De Novo Transcriptome Sequencing of Meja-Induced Taraxacum koksaghyz Rodin to Identify Genes Related to Rubber Formation. Scientific Reports, 7, Article No. 15697.
https://doi.org/10.1038/s41598-017-14890-z
[7]  Nowicki, M., Zhao, Y., Boggess, S.L., et al. (2019) Taraxacum kok-saghyz (Rubber Dandelion) Genomic Microsatellite Loci Reveal Modest Genetic Diversity and Cross-Amplify Broadly to Related Species. Scientific Reports, 9, Article No. 1915.
https://doi.org/10.1038/s41598-019-38532-8
[8]  Pütter, K.M., van Deenen, N., Müller, B., et al. (2019) The OSC1 Enzymes and CYP716A263 Produce a High Variety of Triterpenoids in the Latex of Taraxacum koksaghyz. Scientific Reports, 9, Article No. 5942.
https://doi.org/10.1038/s41598-019-42381-w
[9]  van Deenen, N., Unland, K., Prüfer, D., et al. (2019) Oxidosqualene Cyclase Knock-Down in Latex of Taraxacum koksaghyz Reduces Triterpenes in Roots and Separated Natural Rubber. Molecules, 24, 2703.
https://doi.org/10.3390/molecules24152703
[10]  罗士苇. 橡胶草: 产胶植物的介绍之一[J]. 科学通报, 1950, 1(8): 559-564.
[11]  Wieghaus, A., Pütter, K.M. and Gronover, C.S. (2019) Loss of Function Mutation of the Rapid Alkalinization Factor (RALF1)-Like Peptide in the Dandelion Taraxacum koksaghyz Entails a High-Biomass Taproot Phenotype. PLoS ONE, 14, e0217454.
https://doi.org/10.1371/journal.pone.0217454
[12]  Volis, S., Uteulin, K. and Mills, D. (2009) Russian Dandelion (Taraxacum Kok-saghyz): One More Example of Over Collecting in the Past? Journal of Applied Botany and Food Quality, 83, 60-63.
[13]  Niephaus, E. and Muller, B. (2019) Uncovering Mechanisms of Rubber Biosynthesis in Taraxacum koksaghyz—Role of Cis-Prenyltransferase-Like 1 Protein. The Plant Journal, 100, 591-609.
https://doi.org/10.1111/tpj.14471
[14]  Krotkov, G. (1945) A Review of Literature on Taraxacum kok-saghyz Rod. The Botanical Review, 11, 417-461.
https://doi.org/10.1007/BF02861139
[15]  Xie, Q.L., Ding, G.H., Zhu, L.P., et al. (2019) Proteomic Landscape of the Mature Roots in a Rubber-Producing Grass Taraxacum Kok-saghyz. International Journal of Molecular Sciences, 20, 2596.
https://doi.org/10.3390/ijms20102596
[16]  Lin, T., Xu, X., Ruan, J., et al. (2017) Genome Analysis of Taraxacum kok-saghyz Rodin Provides New Insights into Rubber Biosynthesis. National Science Review, 5, 78-87.
https://doi.org/10.1093/nsr/nwx101
[17]  Benninghaus, V.A., Deenen, N.V., Müller, B., et al. (2019) Comparative Proteome and Metabolome Analyses of Latex-Exuding and -Non-Exuding Taraxacum kok-saghyz Roots Provide Insights into Laticifer Biology. Journal Experimental Botany, 19, erz512.
https://doi.org/10.1093/jxb/erz512
[18]  Cornish, K., Kopicky, S.L., Mcnulty, S.K., et al. (2016) Temporal Diversity of Taraxacum koksaghyz Plants Reveals High Rubber Yield Phenotypes. Biodiversitas, 17, 847-856.
https://doi.org/10.13057/biodiv/d170262
[19]  Zhang, N., Guo, T.Y., Ma, X., et al. (2019) Rational Rubber Extraction and Simultaneous Determination of Rubber Content and Molecular Weight Distribution in Taraxacum kok-saghyz Rodin by Size-Exclusion Chromatography. Chromatographia, 82, 1459-1466.
https://doi.org/10.1007/s10337-019-03773-2
[20]  Cornish, K. (2017) Alternative Natural Rubber Crops: Why Should We Care? Technologies & Innovations, 18, 245-256.
https://doi.org/10.21300/18.4.2017.245
[21]  Panara, F., Lopez, L., Daddiego, L., et al. (2019) Comparative Transcriptomics between High and Low Rubber Producing Taraxacum koksaghyz R. Plants. BMC Genomics, 19, Article No. 875.
https://doi.org/10.1186/s12864-018-5287-4
[22]  仇键, 张继川, 罗世巧, 等. 橡胶草的研究进展[J]. 植物学报, 2015, 50(1): 133-141.
[23]  Molinua, M.G., Piluzza, G., Campesib, G., et al. (2019) Antioxidant Sources from Leaves of Russian Dandelion. Chemistry & Biodiversity, 16, e1900250.
https://doi.org/10.1002/cbdv.201900250
[24]  梁素钰, 王文帆, 刘滨凡, 等. 能源橡胶草的综合利用研究[J]. 能源研究与信息, 2010, 26(4): 219-236.
[25]  Zuluaga, D.L., Gonzali, S., Loreti, E., et al. (2008) Arabidopsis thaliana MYB75/PAP1 Transcription Factor Induces Anthocyanin Production in Transgenic Tomato Plants. Functional Plant Biology, 35, 606-618.
https://doi.org/10.1071/FP08021
[26]  Li, X., Gao, M.J., Pan, H.Y., et al. (2010) Purple Canola: Arabidopsis PAP1 Increases Antioxidants and Phenolics in Brassica napus Leaves. Journal of Agricultural and Food Chemistry, 58, 1639-1645.
https://doi.org/10.1021/jf903527y
[27]  Zhou, L.L., Zeng, H.N., Shi, M.Z., et al. (2008) Development of Tobacco Callus Cultures over Expressing Arabidopsis PAP1/MYB75 Transcription Factor and Characterization of Anthocyanin Biosynthesis. Planta, 229, 37-51.
https://doi.org/10.1007/s00425-008-0809-y
[28]  吴琼, 孙超, 陈士林, 等. 转录组学在药用植物研究中的应用[J]. 世界科学技术(中医药现代化), 2010, 12(3): 457-462.
[29]  Hahn, T., Klemm, A., Ziesse, P., et al. (2016) Optimization and Scale-Up of Inulin Extraction from Taraxacum kok-saghyz Roots. Natural Product Communications, 11, 689-692.
https://doi.org/10.1177/1934578X1601100535
[30]  Qiu, J., Sun, S., Luo, S., et al. (2014) Arabidopsis AtPAP1 Transcription Factor Induces Anthocyanin Production in Transgenic Taraxacum brevicorniculatum. Plant Cell Reports, 33, 669-680.
https://doi.org/10.1007/s00299-014-1585-8
[31]  Musto, S., Barbera, V., Maggio, M., et al. (2016) Crystallinity and Crystalline Phase Orientation of Poly(1,4-cis-isoprene) from Hevea brasiliensis and Taraxacum kok-saghyz. Polymers for Advanced Technologies, 27, 1082-1090.
https://doi.org/10.1002/pat.3774
[32]  Bach, T.J. (1995) Some New Aspects of Isoprenoid Biosynthesis in Plants. In: Kader, J.C. and Mazliak, P., Eds., Plant Lipid Metabolism, Springer, Dordrecht, 321-334.
https://doi.org/10.1007/978-94-015-8394-7_90
[33]  王尧龙, 黄璐琦, 袁媛, 等. 药用植物转录组研究进展[J]. 中国中药杂志, 2015, 40(11): 2055-2061.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133