|
Material Sciences 2021
高熵合金制备与力学性能研究进展
|
Abstract:
高熵合金由多种元素以等原子比或近似等原子比组成,突破了原有金属材料对主元的限制,微观结构独特。作为一种新型金属材料,其具有高强度、高硬度、耐磨性、耐腐蚀性和高温稳定性等优良性能,得到了研究人员的广泛关注。最早采用的真空熔炼法已在制备高熵合金领域非常成熟;机械合金化技术则突破了元素熔点的差异,扩大了元素选择范围;而表面工程技术减少了原料投入,更利于工业生产。近些年来,学者们对于高熵合金性能的强化机理进行了更深入讨论,侧重分析微观结构调控对其性能的影响。本文综述了近些年高熵合金的制备方法,包括真空熔炼法、机械合金化技术、表面工程技术法等,并对高熵合金力学性能的研究进展进行了说明,简单展望了其未来研究前景。
High-Entropy Alloys (HEAs) are multicomponent alloys containing several principle elements (usually ≥ 5) in equiatomic or near equiatomic ratio, breaking through the limitation of the original metal material, and has unique microstructure. HEAs, a new type of metal material, possess a lot of distinguished properties, such as high strength, high hardness, wear resistance, corrosion resistance and high temperature stability, which attract wide attention from researchers. The vacuum smelting method, the earliest used method, has been very mature in the field of preparing HEAs; Mechanical alloying technology breaks through the difference of element melting point and enlarges the range of element selection; The surface engineering technology reduces the input of raw materials and is more conducive to industrial production. In recent years, scholars have conducted more in-depth discussions on the strengthening mechanism of HEAs performance, focusing on the analysis of the influence of microstructure regulation on its performance. In this paper, the preparation methods of HEAs in recent years, including vacuum melting, mechanical alloying, surface coating engineering, etc., are reviewed. The present research status of mechanical properties of HEAs is described, and the future development of high entropy alloys is prospected.
[1] | Yeh, J.W., Chen, S.K., Chang, S.J., et al. (2004) Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6, 299-303.
https://doi.org/10.1002/adem.200300567 |
[2] | Miracle, D.B. and Senkov, O.N. (2017) A Critical Review of High Entropy Alloys and Related Concepts. Acta Materialia, 122, 448-511. https://doi.org/10.1016/j.actamat.2016.08.081 |
[3] | Sharma, P., Dwivedi, V.K. and Dwivedi, S.P. (2020) Devel-opment of High Entropy Alloys: A Review. Materials Today: Proceedings, 12. https://doi.org/10.1016/j.matpr.2020.12.023 |
[4] | 杨迪, 孟旭, 赵越超, 等. 多主元高熵合金基复合材料的研究进展[J]. 热加工工艺, 2019, 16(8): 29-33. |
[5] | 周航, 杨少锋, 杨亚楠, 等. 高熵合金的研究进展及发展趋势[J]. 热加工工艺, 2018, 47(18): 5-9. |
[6] | Lu, Z.P., Wang, H., Chen, M.W., et al. (2015) An Assessment on the Future Development of High-Entropy Alloys: Summary from a Recent Workshop. Intermetallics, 66, 67-76. https://doi.org/10.1016/j.intermet.2015.06.021 |
[7] | Ye, Y.F., Wang, Q., Lu, J., et al. (2016) High-Entropy Alloy: Challenges and Prospects. Materials Today, 19, 349-362.
https://doi.org/10.1016/j.mattod.2015.11.026 |
[8] | Zhang, W.R., Liaw, P.K. and Zhang, Y. (2018) Science and Technology in High-Entropy Alloys. Science China Materials, 61, 2-22. https://doi.org/10.1007/s40843-017-9195-8 |
[9] | 贺毅强, 徐虎林, 任昌旭, 等. 多组元高熵合金制备方法的研究现状[J]. 有色金属工程, 2020, 10(6): 30-33. |
[10] | Liu, Y.Y., Chen, Z., Shi, J.C., et al. (2019) The Effect of Al Content on Microstructures and Comprehensive Properties in AlxCoCrCuFeNi High Entropy Alloys. Vacuum, 161, 143-149. https://doi.org/10.1016/j.vacuum.2018.12.009 |
[11] | Zhang, J., Hu, Y.Y., Wei, Q.Q., Xiao, Y., Chen, P.A., Luo, G.Q. and Shen, Q. (2020) Microstructure and Mechanical Properties of RexNbMoTaW High-Entropy Alloys Prepared by Arc Melting Using Metal Powders. Journal of Alloys and Compounds, 827, Article ID: 154301. https://doi.org/10.1016/j.jallcom.2020.154301 |
[12] | Xu, Y.Q. (2019) In-Situ High Throughput Synthesis of High-Entropy Alloys. Scripta Materialia, 160, 44-47.
https://doi.org/10.1016/j.scriptamat.2018.09.040 |
[13] | Zhang, L.J., Yu, P.F., Fan, J.T., Zhang, M.D., Zhang, C.Z., Cui, H.Z. and Li, G. (2020) Investigating the Micro and Nanomechanical Properties of CoCrFeNi-Cx High-Entropy Alloys Containing Eutectic Carbides. Materials Science & Engineering A, 796, Article ID: 140065. https://doi.org/10.1016/j.msea.2020.140065 |
[14] | 陈哲, 陆伟, 严彪. 机械合金化制备高熵合金研究进展[J]. 金属功能材料, 2012, 19(3): 51-54. |
[15] | Varalakshmi, S., Kamaraj, M. and Murty, B.S. (2008) Synthesis and Characteri-zation of Nanocrystalline AlFeTiCrZnCu High Entropy Solid Solution by Mechanical Alloying. Journal of Alloys and Compounds, 460, 253-257.
https://doi.org/10.1016/j.jallcom.2007.05.104 |
[16] | Cheng, H., Liu, X.Q., Tang, Q.H., et al. (2019) Microstructure and Mechanical Properties of FeCoCrNiMnAlx High Entropy Alloys Prepared by Mechanical Alloying and Hot-Pressed Sintering, Journal of Alloys and Compounds, 775, 742-751. https://doi.org/10.1016/j.jallcom.2018.10.168 |
[17] | 白玲, 葛昌纯, 沈卫平. 放电等离子烧结技术[J]. 粉末冶金技术, 2007, 25(3): 217-223. |
[18] | Wang, M.L., Cui, H.Z., Zhao, Y., Wang, C.M., Wei, N., Gao, X.H. and Song, Q. (2019) Enhanced Strength and Ductility in a Spark Plasma Sintered CoCrCu0.5NiAl0.5 High-Entropy Alloy via a Double-Step Ball Milling Approach for Processing Powders. Materials Science & Engineering A, 762, Article ID: 138071.
https://doi.org/10.1016/j.msea.2019.138071 |
[19] | Ditenberg, I.A., Smirnov, I.V., Grinyaev, K.V., et al. (2020) Morphology, Structural-Phase State and Microhardness of a Multicomponent Non-Equiatomic W-Ta-Mo-Nb-Zr-Cr-Ti Powders Mixture Depending on the Duration of Ball Milling. Advanced Powder Technology, 31, 4401-4410. https://doi.org/10.1016/j.apt.2020.09.016 |
[20] | 董天顺, 刘琦, 李艳姣, 李国禄, 孟宏杰, 冯阳. 高熵合金涂层的研究现状及展望[J]. 材料保护, 2020, 53(7): 137-141. |
[21] | Huang, P.K., Yeh, J.W., Shun, T.T., et al. (2004) Mul-ti-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Advanced En-gineering Materials, 6, 74-78.
https://doi.org/10.1002/adem.200300507 |
[22] | Ang, A.S.M., Berndt, C.C., Sesso, M.L., et al. (2015) Plas-ma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi. Metallurgical and Materials Transactions A, 46, 791-800.
https://doi.org/10.1007/s11661-014-2644-z |
[23] | 张津超, 石世宏, 龚燕琪, 等. 激光熔覆技术研究金属[J]. 表面技术, 2020, 49(10): 65-68. |
[24] | Huang, L.F., Sun, Y.N., Amar, A., Wu, C.G., Liu, X., Le, G.M., Wang, X.Y., Wu, J., Li, K., Jiang, C.L. and Li, J.F. (2021) Microstructure Evolution and Mechanical Properties of AlxCoCrFeNi High-Entropy Alloys by Laser Melting Deposition. Vacuum, 183, Article ID: 109875. https://doi.org/10.1016/j.vacuum.2020.109875 |
[25] | 陈永星, 朱胜, 王晓明, 等. 激光熔覆Al0.4CoCu0.6NiSi0.2Ti0.25高熵合金成形层耐磨性及机理分析[J]. 热加工工艺, 2018, 47(22): 1-6. |
[26] | Liu, H., Sun, S.F., Zhang, T., Zhang, G.Z., Yang, H.F. and Hao, J.B. (2021) Effect of Si Addition on Microstructure and Wear Be-havior of AlCoCrFeNi High-Entropy Alloy Coatings Prepared by Laser Cladding. Surface & Coatings Technology, 405, Article ID: 126522. https://doi.org/10.1016/j.surfcoat.2020.126522 |
[27] | 张毅勇, 张志彬, 姚雯, 梁秀兵. 高熵合金薄膜研究现状与展望[J]. 表面技术, 2021, 50(1): 117-129. |
[28] | Huo, W.Y., Fang, F., Liu, X.D., Tan, S.Y., Xie, Z.H. and Jiang, J.Q. (2019) Fatigue Resistance of Nanotwinned High Entropy Alloy Films. Materials Science and Engineering: A, 739, 26-30.
https://doi.org/10.1016/j.msea.2018.09.112 |
[29] | 李安敏, 史君佐, 谢明款. 高熵合金力学性能的研究进展[J]. 材料导报A: 综述篇, 2018, 32(2): 461-466. |
[30] | Li, W.D., Xie, D., Li, D.Y., Zhang, Y., Gao, Y.F. and Liaw, P.K. (2021) Mechanical Behavior of High-Entropy Alloy. Progress in Materials Science, 2021, Article ID: 100777. https://doi.org/10.1016/j.pmatsci.2021.100777 |
[31] | Chen, J., Zhou, X.Y., Wang, W.L., et al. (2018) A Review on Fundamental of High Entropy Alloys with Promising High-Temperature Properties. Journal of Alloys and Compounds, 760, 15-30.
https://doi.org/10.1016/j.jallcom.2018.05.067 |
[32] | Gorsse, S., Couzinie, J.-P. and Miracle, D.B. (2018) From High-Entropy Alloys to Complex Concentrated Alloys. Comptes Rendus Physique, 19, 721-736. https://doi.org/10.1016/j.crhy.2018.09.004 |
[33] | Rogal, L., Kalita, D. and Litynska-Dobrzynska, L. (2017) CoCrFeMnNi High Entropy Alloy Matrix Nanocomposite with Addition of Al2O3. Intermetallics, 86, 104-109. https://doi.org/10.1016/j.intermet.2017.03.019 |
[34] | Rogal, L., Kalita, D., Tarasek, A., et al. (2017) Effect of SiC Nano-Particles on Microstructure and Mechanical Properties of the CoCrFeMnNi High Entropy Alloy. Journal of Alloys and Compounds, 708, 344-352.
https://doi.org/10.1016/j.jallcom.2017.02.274 |
[35] | Fu, Z.Z. and Koc, R. (2017) Ultrafine TiB2-TiNiFeCrCoAl High-Entropy Alloy Composite with Enhanced Mechanical Properties. Materials Science & Engineering A, 702, 184-188. https://doi.org/10.1016/j.msea.2017.07.008 |
[36] | Joo, S.H., Kato, H., Jang, M.A., et al. (2017) Tensile Deformation Behavior and Deformation Twinning of an Equimolar CoCrFeMnNi High-Entropy Alloy. Materials Science & Engineering A, 698, 122-133.
https://doi.org/10.1016/j.msea.2017.02.043 |
[37] | Cheng, Z., Yang, L., Mao, W.H., Huang, Z.K., Liang, D.S., He, B. and Ren, F.Z. (2020) Achieving High Strength and High Ductility in a High-Entropy Alloy by a Combination of a Heterogeneous Grain Structure and Oxide-Dispersion Strengthening. Materials Science and Engineering: A, 805, Article ID: 140544.
https://doi.org/10.1016/j.msea.2020.140544 |
[38] | Yi, J.J., Wang, L., Zeng, L., Xu, M.Q. and Yang, L. (2021) Ex-cellent Strength-Ductility Synergy in a Novel Single-Phase Equiatomic CoFeNiTiV High Entropy Alloy. International Journal of Refractory Metals and Hard Materials, 95, Article ID: 105416. https://doi.org/10.1016/j.ijrmhm.2020.105416 |
[39] | Lu, Y.P., Dong, Y., Guo, S., et al. (2014) A Promising New Class of High Temperature Alloys: Eutectic High-Entropy Alloys. Scientific Reports, 4, Article No. 6200. https://doi.org/10.1038/srep06200 |
[40] | Gao, X.Z., Lu, Y.P., Zhang, B., et al. (2017) Microstructural Origins of High Strength and High Ductility in an AlCoCrFeNi2.1 Eutectic High-Entropy Alloy. Acta Materialia, 141, 59-66. https://doi.org/10.1016/j.actamat.2017.07.041 |
[41] | Wang, Y.T., Chen, W., Zhang, J. and Zhou, J.Q. (2021) A Quantitative Understanding on the Mechanical Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy. Journal of Alloys and Compounds, 850, Article ID: 156610.
https://doi.org/10.1016/j.jallcom.2020.156610 |
[42] | Wu, Q.F., Wang, Z.J., Hu, X.B., Zheng, T., Yang, Z.S., He, F., Li, J.J. and Wang, J.C. (2020) Uncovering the Eutectics Design by Machine Learning in the Al-Co-Cr-Fe-Ni High En-tropy System. Acta Materialia, 182, 278-286.
https://doi.org/10.1016/j.actamat.2019.10.043 |
[43] | Jin, X., Bi, J., Zhang, L., et al. (2019) A New CrFeNi2Al Eu-tectic High Entropy Alloy System with Excellent Mechanical Properties. Journal of Alloys and Compounds, 770, 655-661. https://doi.org/10.1016/j.jallcom.2018.08.176 |
[44] | Zhuang, Y.X., Xue, H.D., Chen, Z.Y., et al. (2013) Effect of Annealing Treatment on Microstructures and Mechanical Properties of FeCoNiCuAl High Entropy Alloys. Materials Science & Engineering A, 572, 30-35.
https://doi.org/10.1016/j.msea.2013.01.081 |
[45] | Li, Z.Y., Fu, L.M., Peng, J., Zheng, H. and Shan, A.D. (2020) Effect of Annealing on Microstructure and Mechanical Properties of an Ultrafine-Structured Al-Containing FeCoCrNiMn High-Entropy Alloy Produced by Severe Cold Rolling. Materials Science and Engineering: A, 786, Article ID: 139446. https://doi.org/10.1016/j.msea.2020.139446 |
[46] | Zhang, W., Ma, Z.C., Zhao, H.W. and Ren, L.Q. (2021) Breakthrough the Strength-Ductility Trade-Off in a High Entropy Alloy at Room Temperature via Cold Rolling and Annealing. Materials Science and Engineering: A, 800, Article ID: 140264. https://doi.org/10.1016/j.msea.2020.140264 |
[47] | Zhuang, Y.X., Liu, W.J., Chen, Z.Y., et al. (2012) Effect of Elemental Interaction on Microstructure and Mechanical Properties of FeCoNiCuAl Alloys. Materials Science & En-gineering A, 556, 395-399.
https://doi.org/10.1016/j.msea.2012.07.003 |
[48] | Hsu, Y.-C., Li, C.-L. and Hsueh, C.-H. (2020) Modifications of Microstructures and Mechanical Properties of CoCrFeMnNi High Entropy Alloy Films by Adding Ti Element. Surface & Coatings Technology, 399, 12614.
https://doi.org/10.1016/j.surfcoat.2020.126149 |