全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

强夯法加固粉土路基现场试验研究
Field Test Study on Consolidation of Silty Subgrade by Dynamic Compaction

DOI: 10.12677/HJCE.2021.104032, PP. 285-294

Keywords: 强夯,粉土路基,夯沉量,静力触探,压实度,工艺参数
Dynamic Compaction
, Silt Subgrade, Tamping Settlement, Static Sounding, Compaction Degree, Process Parameters

Full-Text   Cite this paper   Add to My Lib

Abstract:

依托典型黄泛区高速公路工程,开展了松铺高度为4 m的粉土路基强夯填筑试验研究,通过试验路测试,优化了相关工艺参数,分析了强夯法加固粉土路基的效果。结果显示,采用1500 kN?m的夯击能填筑松铺高度为4 m的黄泛区粉土路基是可行的,其合理设计和工艺参数为夯击能采用1500 kN?m,夯击数为10击,夯间距为3.2 m,土的含水率宜控制在最佳含水率的?5%~3%范围内;经多点夯、满夯之后,强夯路基的空间密度仍呈现不均匀分布,其中夯锤下的土体压实度略高于夯间2个百分点,上部土体的压实度则显著高于下部土体约6个百分点;夯后路基的平均静回弹模量约为52 MPa,其中夯间承载能力略低于夯锤以下约2.7 MPa;为保证路基支撑的均匀性,强夯路基上部应该设置一定厚度的均匀过渡层,强夯路基上部设置2 × 20 cm石灰处置土过渡层后,路基静回弹模量约提高1倍,路基支撑均匀。
This paper performed experimental investigation on the dynamic compaction of a typical expressway silt roadbed with a height of 4 m in the Yellow River flooding area. Based on experimental achievement, relevant technological parameters were optimized and the effect of the dynamic compaction method on strengthening the silt roadbed was characterized. The results indicated that the lamping of 1500 kN?m is feasible to fill silt roadbed in Yellow River flooding area with the height of 4 m. The optimized tamping energy is 1500 kN?m with the tamper spacing of 3.2 m. The tamping number is controlled at 10 and the soil moisture content should be controlled in the optimal moisture content ?5%~3% range. After multi-point compaction and full compaction, the spatial density of the dynamic compaction roadbed still presents an uneven distribution, among which the compaction degree of the soil under the rammer is slightly higher than 2%, while the compaction degree of the upper soil is 6% higher than that of the lower soil. The average static resilient modulus of the rammed roadbed is about 52 MPa, among which the load capacity between rammers is slightly lower than that under the rammer, about 2.7 MPa. In order to ensure the uniformity of subgrade support, a uniform transition layer of a certain thickness should be set at the upper part of the dynamic compaction subgrade. After setting a 2 × 20 cm lime treated soil transition layer at the upper part of the dynamic compaction subgrade, the static resilient modulus of the subgrade would be increased by about one time, and the subgrade support would be uniform.

References

[1]  曾国熙, 卢肇钧, 蒋国澄, 叶政青. 地基处理手册[M]. 北京: 中国建筑工业出版社, 1994.
[2]  王铁宏. 全国重大工程项目地基处理工程实录[M]. 北京: 中国建筑工业出版社, 2005.
[3]  冶金工业部建筑研究总院. 强力夯实法与振动水冲法[M]. 北京: 冶金工业出版社, 1989.
[4]  Sandler, I.S. and Rubin, D. (1979) An Algorithm and a Modular Subroutine for the CAP Model. International Journal for Numerical and Analytical Methods in Geomechanics, 3, 173-186.
https://doi.org/10.1002/nag.1610030206
[5]  Ghassemi, A., Pak, A. and Shahir, H. (2009) A Numerical Tool for Design of Dynamic Compaction Treatment in Dry and Moist Sands. Iranian Journal of Science and Technology, 33, 313-316.
[6]  Ma, Z.Y., Dang, F.N. and Liao, H.J. (2014) Numerical Study of the Dynamic Compaction of Gravel Soil Ground Using the Discrete Element Method. Granular Matter, 16, 881-889.
https://doi.org/10.1007/s10035-014-0529-x
[7]  Fan, D.H. (2013) Analysis on Dynamic Compaction and Mechanical Behavior of Reclamation Foundation Using Soil Tests. Materials Testing, 55, 892-896.
https://doi.org/10.3139/120.110509
[8]  胡长明, 梅源, 王雪艳. 离石地区湿陷性黄土地基强夯参数的试验研究[J]. 岩土力学, 2012, 33(10): 2903-2909.
[9]  刘洋, 张铎, 闫鸿翔. 吹填土强夯加排水地基处理的数值分析与应用[J]. 岩土力学, 2013, 34(5): 1478-1486.
[10]  牛志荣, 杨桂通. 冲击荷载下土体位移特征研究[J]. 岩土力学, 2005, 26(11): 1743-1748.
[11]  姚占勇, 周冲, 蒋红光, 毕玉峰, 孙梦林, 周磊生, 齐辉. 基于帽盖模型的强夯地基应力-应变特征与有效加固范围分析[J]. 岩石力学与工程学报, 2018, 37(4): 969-977.
[12]  郑颖人, 陆新, 李学志, 冯遗兴. 强夯加固软粘土地基的理论与工艺研究[J]. 岩土工程学报, 2000, 22(1): 21-25.
[13]  张清峰, 王东权. 煤矸石地基在强夯冲击荷载作用下的物理模型试验研究[J]. 岩石力学与工程学报, 2013, 32(5): 1049-1056.
[14]  董倩, 况龙川, 孔凡林. 碎石土地基强夯加固效果评价与工程实践[J]. 岩土工程学报, 2011, 33(S1): 337-341.
[15]  贺为民, 范建. 强夯法处理湿陷性黄土地基评价[J]. 岩石力学与工程学报, 2007, 26(S2): 4095-4101.
[16]  周健, 史旦达, 贾敏才, 崔积弘. 低能量强夯法加固粉质黏土地基试验研究[J]. 岩土力学, 2007, 28(11): 2359-2364.
[17]  年廷凯, 李鸿江, 杨庆, 陈允进, 王玉立. 不同土质条件下高能级强夯加固效果测试与对比分析[J]. 岩土工程学报, 2009, 31(1): 139-144.
[18]  罗恒, 邹金锋, 李亮, 杨小礼, 郭乃正, 何长明, 赵炼恒. 红砂岩碎石土高填方路基强夯加固时的动应力扩散及土体变形试验研究[J]. 岩石力学与工程学报, 2007, 26(S1): 2701-2706.
[19]  王桂尧, 胡振南, 匡希龙. 红砂岩路基强夯处理大变形数值模拟方法与效果分析[J]. 岩土力学, 2008, 29(9): 2451-2456.
[20]  郭乃正, 邹金锋, 李亮, 杨小礼, 赵炼恒, 但汉成. 大颗粒红砂岩高填方路基强夯加固理论与试验研究[J]. 中南大学学报(自然科学版), 2008, 39(1): 185-189.
[21]  乔兰, 丁余慧, 于德水. 强夯法处理路基的加固效果[J]. 北京科技大学学报, 2005, 27(6): 659-661.
[22]  王吉利, 刘怡林, 栾茂田, 沈兴付. 强夯法处理黄土路基检测方法试验研究[J]. 岩石力学与工程学报, 2004, 23(S1): 4562-4567.
[23]  崔新壮, 姚占勇. 强夯在威乳高速公路改建工程中的应用研究及一般性推广[J]. 山东大学学报(工学版), 2008(8): 53-56.
[24]  王楹, 姚占勇, 张昊. 强夯加固公路路基的工后沉降分析[J]. 公路交通科技, 2016(3): 169-174.
[25]  中华人民共和国住房和城乡建设部. JGJ 79-2012建筑地基处理技术规范[S]. 北京: 中国建筑工业出版社出版, 2012.
[26]  中华人民共和国交通运输部. JTG D30-2015公路路基设计规范[S]. 北京: 人民交通出版社股份有限公司, 2015.
[27]  孔位学, 陆新, 郑颖人. 强夯有效加固深度的模糊预估[J]. 岩土力学, 2002, 23(6): 807-809.
[28]  何长明, 邹金锋, 李亮. 强夯动应力的量测及现场试验研究[J]. 岩土工程学报, 2007, 29(4): 628-632.
[29]  颜波, 林沛元, 于海涛, 李海洋, 丁庆峰. 强夯地基处理夯沉量及夯击能量耗散分析[J]. 岩土工程学报, 2011, 33(S1): 249-252.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133