全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于生成对抗网络的无人机图像去雾算法
UAV Image Dehazing Algorithm Based on Generative Adversarial Network

DOI: 10.12677/JISP.2021.102009, PP. 80-87

Keywords: 无人机,图像去雾,深度学习,生成对抗网络
UAV
, Image Defogging, Deep Learning, Generative Adversarial Networks

Full-Text   Cite this paper   Add to My Lib

Abstract:

无人机所采集的图像容易受到雾霾、雾气等阴霾天气干扰,造成图像质量下降。针对阴霾天气下无人机采集图像的质量下降问题,提出了一种新颖的基于生成对抗网络的图像去雾方法。本方法设计了新式生成网络和判别网络,生成网络由多层编码器和解码器对称分布构成,判别网络由全卷积网络构成,为了提高生成图像的清晰度,引入了一种新的对抗和平滑损失函数来优化整个网络。最后,通过大量实验表明,基于本文方法进行图像去雾取得了良好的效果,在结构相似度和峰值信噪比等评价指标以及主观视觉效果上优于已有的图像去雾方法。
The image collected by UAV is easy to be disturbed by fog, which leads to the degradation of image quality. Aiming at the image degradation of UAV in foggy scenes, a novel image defogging method based on generative adversarial network is proposed. Anew generator and discriminator are designed. The generating network consists of multi-layer encoder and decoder; then the discriminator network consists of fully convolutional network. In order to improve the clarity of the generated image, a new loss function is introduced to optimize the whole network, including adversarial loss and smooth loss. Through training and testing, it can be concluded that the image defogging method based on generative adversarial networks has achieved good results, and it is better than traditional methods in structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR).

References

[1]  钟伟雄, 韦凤, 邹仁, 等. 无人机概论[M]. 北京: 清华大学出版社, 2019.
[2]  卢汉明. 基于融合技术的遥感影像质量改善与修补[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2010.
[3]  朱锡芳, 吴峰, 陶纯堪. 基于小波阈值理论的光学图像去云处理新算法[J]. 光子学报, 2009, 38(12): 3312-3317.
[4]  Fattal, R. (2008) Single Image Dehazing. ACM Transactions on Graphics, 27, 721-729.
https://doi.org/10.1145/1360612.1360671
[5]  Tan, R. (2008) Visibility in Bad Weather from a Single Image. IEEE Conference on Vision and Pattern Recognition, Anchorage, 23-28 June 2008, 1-8.
https://doi.org/10.1109/CVPR.2008.4587643
[6]  He, K.M., Sun, J. and Tang, X.O. (2013) Guided Image Filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1397-1409.
https://doi.org/10.1109/TPAMI.2012.213
[7]  Cai, B., Xu, X., Jia, K., et al. (2016) Dehaze-Net: An End-to-End System for Single Image Haze Removal. IEEE Transactions on Image Processing, 25, 5187-5198.
https://doi.org/10.1109/TIP.2016.2598681
[8]  Tang, K., Yang, J. and Wang, J. (2014) Investigating Haze-Relevant Features in a Learning Framework for Image Dehazing. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 2995-3002.
https://doi.org/10.1109/CVPR.2014.383
[9]  Ren, W., Liu, S., Zhang, H., et al. (2016) Single Image Dehazing via Multi-Scale Convolutional Neural Net-Works. In: Leibe, B., Matas, J., Sebe, N. and Welling, M., Eds., European Conference on Computer Vision, Springer, Cham, 154-169.
https://doi.org/10.1007/978-3-319-46475-6_10
[10]  Li, B.Y., Peng, X.L., Wang, Z.Y., et al. (2017) AOD-Net: All-in-One Dehazing Network. Proceedings of IEEE International Conference on Computer Vision (ICCV), Venice, 22-29 October 2017, 4780-4788.
https://doi.org/10.1109/ICCV.2017.511
[11]  吴迪, 朱青松. 图像去雾的最新研究进展[J]. 自动化学报, 2015, 41(2): 221-239.
[12]  Gatys, L., Ecker, A. and Bethge, M. (2016) A Neural Algorithm of Artistic Style. Journal of Vision, 16, 326.
https://doi.org/10.1167/16.12.326
[13]  Johnson, J., Alahi, A. and Li, F.F. (2016) Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In: Leibe, B., Matas, J., Sebe, N. and Welling, M., Eds., European Conference on Computer Vision, Springer, Cham, 694-711.
https://doi.org/10.1007/978-3-319-46475-6_43
[14]  St?pień, I., Obuchowicz, R., Piórkowski, A. and Oszust, M. (2021) Fusion of Deep Convolutional Neural Networks for No-Reference Magnetic Resonance Image Quality Assessment. Sensors, 21, 1043.
https://doi.org/10.3390/s21041043
[15]  Hautilere, N., Tarel, J.-P., Aubert, D. and Dumont, E. (2011) Blind Contrast Enhancement Assessment by Gradient Ratioing at Visible Edges. Image Analysis & Stereology Journal, 27, 87-95.
https://doi.org/10.5566/ias.v27.p87-95
[16]  Setiadi, D. (2020) PSNR vs SSIM: Imperceptibility Quality Assessment for Image Steganography. Multimedia Tools and Applications, 80, 8423-8444.
https://doi.org/10.1007/s11042-020-10035-z
[17]  Hodges, C., Bennamoun, M. and Rahmani, H. (2019) Single Image Dehazing Using Deep Neural Networks. Pattern Recognition Letters, 128, 70-77.
https://doi.org/10.1016/j.patrec.2019.08.013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133