全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

矿区污染土壤微生物矿化技术分析
Analysis on Microbial Mineralization Technology of Contaminated Soil in Mining Area

DOI: 10.12677/AEP.2021.112032, PP. 304-310

Keywords: 重金属污染,矿区土壤,控制矿化,诱导矿化
Heavy Metal Pollution
, Mining Soil, Controlled Mineralization, Induced Mineralization

Full-Text   Cite this paper   Add to My Lib

Abstract:

有色行业不规范的采选冶过程导致矿区土壤重金属污染严重。生物矿化可以通过生物体自身代谢、细胞或胞外基质将金属离子转变为稳定的固相矿物,是绿色长效的土壤修复技术。其按作用形式主要可分为生物控制矿化和生物诱导矿化。生物控制矿化是通过还原功能菌调整和控制硫化土壤环境中Fe3+浓度,降低土壤环境的氧化还原电位,形成金属硫化矿物沉淀,从而降低重金属的生物有效性和毒性,多用在深层的厌氧环境中。生物诱导矿化则主要通过细胞的生化活动改变周围环境从而实现矿化,目前应用较多的生物诱导碳酸盐沉淀(MICP)主要通过功能菌新陈代谢产生的脲酶催化尿素水解,生成以方解石为主的碳酸盐或复盐晶体,实现重金属的矿化固定,多用在表层或浅层好氧的环境中。
The nonstandard mining, beneficiation and metallurgy process in nonferrous metals industry leads to serious heavy metal pollution in mining soil. Biomineralization can transform metal ions into stable solid minerals through self-metabolism, cell or extracellular matrix, which is a green and long-term soil remediation technology. It can be divided into biological control mineralization and biological induced mineralization. Biocontrol mineralization is to adjust and control the con-centration of Fe3+ in sulfide soil environment by reducing functional bacteria, reduce the redox potential of soil environment, and form metal sulfide mineral precipitation, so as to reduce the bioavailability and toxicity of heavy metals. It is mostly used in deep anaerobic environment. Bioinduced mineralization is mainly through the biochemical activities of cells to change the sur-rounding environment to achieve mineralization. At present, the most widely used microbial in-duced carbonate precipitation (MICP) is mainly through the hydrolysis of urea catalyzed by urease metabolized by functional bacteria to generate calcite-based carbonate or double salt crystals to achieve the mineralization and fixation of heavy metals. It is mostly used in surface or shallow aerobic environment.

References

[1]  杨琳琳, 季秀玲, 吴潇, 林连兵, 魏云林. 微生物在成矿及矿区环境修复中的应用研究现状[J]. 生命科学, 2011, 23(3): 306-310.
[2]  Yuan, H.P., Zhang, J.H., Lu, Z.M., Min, H. and Wu, C. (2009) Studies on Biosorption Equilib-rium and Kinetics of Cd2+ by Streptomyces sp. K33 and HL-12. Journal of Hazardous Materials, 164, 423-431.
https://doi.org/10.1016/j.jhazmat.2008.08.014
[3]  Sari, A. and Tuzen, M. (2009) Biosorption of As(III) and As(V) from Aqueous Solution by Macrofungus (Inonotus hispidus) Biomass: Equilibrium and Kinetic Studies. Journal of Hazardous Materials, 164, 1372-1378.
https://doi.org/10.1016/j.jhazmat.2008.09.047
[4]  Bazylinski, D.A. and Frankel, R.B. (2003) Biologically Con-trolled Mineralization in Prokaryotes. In: Dove, P.M., De Yoreo, J.J. and Weiner, S., Eds., Bazylinski & Frankel, De Gruyter, Berlin, Boston, 217-247.
https://doi.org/10.1515/9781501509346-013
[5]  Labrenz, M., Druschel Gregory, K. and Thomsen-Ebert, T., Gilbert, B., Welch, S.A., Kemner, K.M., et al. (2000) Formation of Sphalerite (ZnS) Deposits in Natural Biofilms of Sulfate-Reducing Bacteria. Science, 290, 1744-1747.
https://doi.org/10.1126/science.290.5497.1744
[6]  Li, X., Wu, Y., Zhang, C., Liu, Y., Zeng, G., Tang, X., et al. (2016) Immobilizing of Heavy Metals in Sediments Contaminated by Nonferrous Metals Smelting Plant Sewage with Sulfate Reducing Bacteria and Micro Zero Valent Iron. Chemical Engineering Journal, 306, 393-400.
https://doi.org/10.1016/j.cej.2016.07.079
[7]  Groudev, S.N., Spasova, I.I. and Georgiev, P.S. (2001) In Situ Bi-oremediation of Soils Contaminated with Radioactive Elements and Toxic Heavy Metals. International Journal of Mineral Processing, 62, 301-308.
https://doi.org/10.1016/S0301-7516(00)00061-2
[8]  Jiang, W. and Fan, W. (2008) Bioremediation of Heavy Metal-Contaminated Soils by Sulfate-Reducing Bacteria. Annals of the New York Academy of Sciences, 1140, 446-454.
https://doi.org/10.1196/annals.1454.050
[9]  吴淑杭, 周德平, 吕卫光, 姜震方, 徐亚同. 硫酸盐还原菌修复铬(Ⅵ)污染土壤研究[J]. 农业环境科学学报, 2007, 26(2): 467-471.
[10]  韩煦, 周天旭, 刘勇. 不同碳源对ZVI-SRB- 体系中生物活性的影响[J]. 天津工业大学学报, 2015(2): 58-63.
[11]  Mulopo, J. (2016) Pilot Scale Assessment of the Continuous Biological Sulphate Removal from Coal Acid Mine Effluent Using Grass Cutting as Carbon and Energy Sources. Journal of Water Process Engineering, 11, 104-109.
https://doi.org/10.1016/j.jwpe.2016.04.001
[12]  Nicolova, M., Spasova, I., Georgiev, P. and Groudev, S. (2017) Microbial Removal of Toxic Metals from a Heavily Polluted Soil. Journal of Geochemical Exploration, 182, 242-246.
https://doi.org/10.1016/j.gexplo.2016.11.003
[13]  张楠, 陈天虎, 周跃飞, 王进, 金杰, 黎少杰. 以秸秆为微生物碳源的尾矿原位修复: 动态实验的初步分析[J]. 矿物岩石地球化学通报, 2011, 30(3): 334-340.
[14]  Zhang, M., Liu, X., Li, Y., Wang, G., Wang, Z. and Wen, J. (2017) Microbial Community and Metabolic Pathway Succession Driven by Changed Nutrient Inputs in Tailings: Effects of Different Nutrients on Tailing Remediation. Scientific Reports, 7, Article No. 474.
https://doi.org/10.1038/s41598-017-00580-3
[15]  苏建, 曹斐姝, 宋海农, 欧孝夺, 李小明. 铝土尾矿原位微生物选培及固化试验研究[J]. 应用基础与工程科学学报, 2020, 28(5): 1224-1234.
[16]  Stocks-Fischer, S., Galinat, J.K. and Bang, S.S. (1999) Microbiological Precipitation of CaCO3. Soil Biology & Biochemistry, 31, 1563-1571.
https://doi.org/10.1016/S0038-0717(99)00082-6
[17]  Benini, S., Rypniewski, W.R., Wilson, K.S., Miletti, S., Ciurli, S. and Mangani, S. (1999) A New Proposal for Urease Mechanism Based on the Crystal Structures of the Native and Inhibited Enzyme from Bacillus Pasteurii: Why Urea Hydrolysis Costs Two Nickels. Structure, 7, 205-216.
https://doi.org/10.1016/S0969-2126(99)80026-4
[18]  Chen, F., Deng, C., Song, W., Zhang, D., Al-Misned, F.A., Golam Mortuza, M., et al. (2016) Biostabilization of Desert Sands Using Bacterially Induce Dcalcite Precipitation. Geomicrobiology Journal, 33, 243-249.
https://doi.org/10.1080/01490451.2015.1053584
[19]  欧孝夺, 莫鹏, 苏建, 苏建, 彭远胜. 生石灰与微生物共同固化过湿性铝尾黏土试验研究[J]. 岩土工程学报, 2020, 42(4): 624-631.
[20]  Fujita, Y., Taylor, J.L., Wendt, L.M., Reed, D.W. and Smith, R.W. (2010) Evaluating the Potential of Native Ureolytic Microbes to Remediate a 90Sr Contaminated Environment. Environmental Science & Technology, 44, 7652-7658.
https://doi.org/10.1021/es101752p
[21]  Achal, V., Pan, X., Zhang, D. and Fu, Q. (2012) Bioremediation of Pb-Contaminated Soil Based on Microbially Induced Calcite Precipitation. Journal of Microbiology & Biotechnology, 22, 244-247.
https://doi.org/10.4014/jmb.1108.08033
[22]  Amoozegar, M.A., Ghazanfari, N. and Didari, M. (2012) Lead and Cadmium Bioremoval by Halomonas sp. an Exopolysaccharide-Producing Halophilic Bacterium. Progress in Biological Sciences, 2, 1-11.
[23]  Achal, V., Pan, X. and Zhang, D. (2011) Remediation of Copper-Contaminated Soil by Kocuria flava CR1, Based on Microbially Induced Calcite Precipitation. Ecological Engineering, 37, 1601-1605.
https://doi.org/10.1016/j.ecoleng.2011.06.008
[24]  许燕波, 钱春香, 陆兆文. 微生物矿化修复重金属污染土壤[J]. 环境工程学报, 2013, 7(7): 2763-2768.
[25]  Kumari, D., Pan, X., Lee, D.J. and Achal, V. (2014) Immobilization of Cadmium in Soil by Microbially Induced Carbonate Precipitation with Exiguobacterium undae at Low Temperature. International Biodeterioration & Biodegradation, 94, 98-102.
https://doi.org/10.1016/j.ibiod.2014.07.007
[26]  Kumari, D., Li, M., Pan, X. and Xin-Yi, Q. (2014) Effect of Bacterial Treatment on Cr(VI) Remediation from Soil and Subsequent Plantation of Pisum sativum. Ecological Engi-neering, 73, 404-408.
https://doi.org/10.1016/j.ecoleng.2014.09.093
[27]  Achal, V., Pan, X., Fu, Q. and Zhang, D. (2012) Biomineralization Based Remediation of As(III) Contaminated Soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201, 178-184.
https://doi.org/10.1016/j.jhazmat.2011.11.067
[28]  Kang, C.H., Choi, J.H., Noh, J.G., Kwak, D.Y., Han, S.H. and So, J.-S. (2014) Microbially Induced Calcite Precipitation-Based Sequestration of Strontium by Sporosarcina pasteurii WJ-2. Applied Biochemistry and Biotechnology, 174, 2482-2491.
https://doi.org/10.1007/s12010-014-1196-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133