|
矿区污染土壤微生物矿化技术分析
|
Abstract:
[1] | 杨琳琳, 季秀玲, 吴潇, 林连兵, 魏云林. 微生物在成矿及矿区环境修复中的应用研究现状[J]. 生命科学, 2011, 23(3): 306-310. |
[2] | Yuan, H.P., Zhang, J.H., Lu, Z.M., Min, H. and Wu, C. (2009) Studies on Biosorption Equilib-rium and Kinetics of Cd2+ by Streptomyces sp. K33 and HL-12. Journal of Hazardous Materials, 164, 423-431.
https://doi.org/10.1016/j.jhazmat.2008.08.014 |
[3] | Sari, A. and Tuzen, M. (2009) Biosorption of As(III) and As(V) from Aqueous Solution by Macrofungus (Inonotus hispidus) Biomass: Equilibrium and Kinetic Studies. Journal of Hazardous Materials, 164, 1372-1378.
https://doi.org/10.1016/j.jhazmat.2008.09.047 |
[4] | Bazylinski, D.A. and Frankel, R.B. (2003) Biologically Con-trolled Mineralization in Prokaryotes. In: Dove, P.M., De Yoreo, J.J. and Weiner, S., Eds., Bazylinski & Frankel, De Gruyter, Berlin, Boston, 217-247.
https://doi.org/10.1515/9781501509346-013 |
[5] | Labrenz, M., Druschel Gregory, K. and Thomsen-Ebert, T., Gilbert, B., Welch, S.A., Kemner, K.M., et al. (2000) Formation of Sphalerite (ZnS) Deposits in Natural Biofilms of Sulfate-Reducing Bacteria. Science, 290, 1744-1747.
https://doi.org/10.1126/science.290.5497.1744 |
[6] | Li, X., Wu, Y., Zhang, C., Liu, Y., Zeng, G., Tang, X., et al. (2016) Immobilizing of Heavy Metals in Sediments Contaminated by Nonferrous Metals Smelting Plant Sewage with Sulfate Reducing Bacteria and Micro Zero Valent Iron. Chemical Engineering Journal, 306, 393-400. https://doi.org/10.1016/j.cej.2016.07.079 |
[7] | Groudev, S.N., Spasova, I.I. and Georgiev, P.S. (2001) In Situ Bi-oremediation of Soils Contaminated with Radioactive Elements and Toxic Heavy Metals. International Journal of Mineral Processing, 62, 301-308.
https://doi.org/10.1016/S0301-7516(00)00061-2 |
[8] | Jiang, W. and Fan, W. (2008) Bioremediation of Heavy Metal-Contaminated Soils by Sulfate-Reducing Bacteria. Annals of the New York Academy of Sciences, 1140, 446-454. https://doi.org/10.1196/annals.1454.050 |
[9] | 吴淑杭, 周德平, 吕卫光, 姜震方, 徐亚同. 硫酸盐还原菌修复铬(Ⅵ)污染土壤研究[J]. 农业环境科学学报, 2007, 26(2): 467-471. |
[10] | 韩煦, 周天旭, 刘勇. 不同碳源对ZVI-SRB- 体系中生物活性的影响[J]. 天津工业大学学报, 2015(2): 58-63. |
[11] | Mulopo, J. (2016) Pilot Scale Assessment of the Continuous Biological Sulphate Removal from Coal Acid Mine Effluent Using Grass Cutting as Carbon and Energy Sources. Journal of Water Process Engineering, 11, 104-109.
https://doi.org/10.1016/j.jwpe.2016.04.001 |
[12] | Nicolova, M., Spasova, I., Georgiev, P. and Groudev, S. (2017) Microbial Removal of Toxic Metals from a Heavily Polluted Soil. Journal of Geochemical Exploration, 182, 242-246. https://doi.org/10.1016/j.gexplo.2016.11.003 |
[13] | 张楠, 陈天虎, 周跃飞, 王进, 金杰, 黎少杰. 以秸秆为微生物碳源的尾矿原位修复: 动态实验的初步分析[J]. 矿物岩石地球化学通报, 2011, 30(3): 334-340. |
[14] | Zhang, M., Liu, X., Li, Y., Wang, G., Wang, Z. and Wen, J. (2017) Microbial Community and Metabolic Pathway Succession Driven by Changed Nutrient Inputs in Tailings: Effects of Different Nutrients on Tailing Remediation. Scientific Reports, 7, Article No. 474. https://doi.org/10.1038/s41598-017-00580-3 |
[15] | 苏建, 曹斐姝, 宋海农, 欧孝夺, 李小明. 铝土尾矿原位微生物选培及固化试验研究[J]. 应用基础与工程科学学报, 2020, 28(5): 1224-1234. |
[16] | Stocks-Fischer, S., Galinat, J.K. and Bang, S.S. (1999) Microbiological Precipitation of CaCO3. Soil Biology & Biochemistry, 31, 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6 |
[17] | Benini, S., Rypniewski, W.R., Wilson, K.S., Miletti, S., Ciurli, S. and Mangani, S. (1999) A New Proposal for Urease Mechanism Based on the Crystal Structures of the Native and Inhibited Enzyme from Bacillus Pasteurii: Why Urea Hydrolysis Costs Two Nickels. Structure, 7, 205-216. https://doi.org/10.1016/S0969-2126(99)80026-4 |
[18] | Chen, F., Deng, C., Song, W., Zhang, D., Al-Misned, F.A., Golam Mortuza, M., et al. (2016) Biostabilization of Desert Sands Using Bacterially Induce Dcalcite Precipitation. Geomicrobiology Journal, 33, 243-249.
https://doi.org/10.1080/01490451.2015.1053584 |
[19] | 欧孝夺, 莫鹏, 苏建, 苏建, 彭远胜. 生石灰与微生物共同固化过湿性铝尾黏土试验研究[J]. 岩土工程学报, 2020, 42(4): 624-631. |
[20] | Fujita, Y., Taylor, J.L., Wendt, L.M., Reed, D.W. and Smith, R.W. (2010) Evaluating the Potential of Native Ureolytic Microbes to Remediate a 90Sr Contaminated Environment. Environmental Science & Technology, 44, 7652-7658.
https://doi.org/10.1021/es101752p |
[21] | Achal, V., Pan, X., Zhang, D. and Fu, Q. (2012) Bioremediation of Pb-Contaminated Soil Based on Microbially Induced Calcite Precipitation. Journal of Microbiology & Biotechnology, 22, 244-247.
https://doi.org/10.4014/jmb.1108.08033 |
[22] | Amoozegar, M.A., Ghazanfari, N. and Didari, M. (2012) Lead and Cadmium Bioremoval by Halomonas sp. an Exopolysaccharide-Producing Halophilic Bacterium. Progress in Biological Sciences, 2, 1-11. |
[23] | Achal, V., Pan, X. and Zhang, D. (2011) Remediation of Copper-Contaminated Soil by Kocuria flava CR1, Based on Microbially Induced Calcite Precipitation. Ecological Engineering, 37, 1601-1605.
https://doi.org/10.1016/j.ecoleng.2011.06.008 |
[24] | 许燕波, 钱春香, 陆兆文. 微生物矿化修复重金属污染土壤[J]. 环境工程学报, 2013, 7(7): 2763-2768. |
[25] | Kumari, D., Pan, X., Lee, D.J. and Achal, V. (2014) Immobilization of Cadmium in Soil by Microbially Induced Carbonate Precipitation with Exiguobacterium undae at Low Temperature. International Biodeterioration & Biodegradation, 94, 98-102. https://doi.org/10.1016/j.ibiod.2014.07.007 |
[26] | Kumari, D., Li, M., Pan, X. and Xin-Yi, Q. (2014) Effect of Bacterial Treatment on Cr(VI) Remediation from Soil and Subsequent Plantation of Pisum sativum. Ecological Engi-neering, 73, 404-408.
https://doi.org/10.1016/j.ecoleng.2014.09.093 |
[27] | Achal, V., Pan, X., Fu, Q. and Zhang, D. (2012) Biomineralization Based Remediation of As(III) Contaminated Soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201, 178-184.
https://doi.org/10.1016/j.jhazmat.2011.11.067 |
[28] | Kang, C.H., Choi, J.H., Noh, J.G., Kwak, D.Y., Han, S.H. and So, J.-S. (2014) Microbially Induced Calcite Precipitation-Based Sequestration of Strontium by Sporosarcina pasteurii WJ-2. Applied Biochemistry and Biotechnology, 174, 2482-2491. https://doi.org/10.1007/s12010-014-1196-4 |