|
基于属性偏序结构图的关联规则提取方法
|
Abstract:
针对Apriori算法生成大量冗余关联规则的问题,本文提出了一种基于属性偏序结构图的关联规则提取方法。该方法旨在寻找相同支持度下的最大频繁项目集,进而提取无冗余关联规则。本文提出的方法不仅减少了挖掘频繁项目集的数量,从而提高关联规则提取的效率,而且将关联规则转换成属性偏序结构图中的知识表示形式,实现了频繁项分层的关联规则可视化展示。具有较强的可读性,有助于用户对关联规则进行深入分析,提高对潜在知识的利用和发掘程度。
Aiming at the problem of Apriori algorithm generating a large number of redundant association rules, this paper proposes an association rule extraction method based on attribute partial order structure diagrams. It can extract non-redundant association rules by finding the maximum fre-quent item sets under the same support. The method proposed in this paper can reduce the num-ber of mining frequent item sets, so as to improve the efficiency of extracting association rules. Moreover, the association rules are converted into the knowledge representation in the attribute partial order structure diagrams, which realizes the visualization of the association rules of the fre-quent item hierarchy. With strong readability, it is helpful for users to conduct in-depth analysis of association rules and improve the utilization and exploitation of potential knowledge.
[1] | Wille, R. (1982) Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. Orderd Sets D Reidel, 83, 314-339. https://doi.org/10.1007/978-3-642-01815-2_23 |
[2] | Agrawal, R., Imieliński, T. and Swami, A. (1993) Mining Association Rules between Sets of Items in Large Databases. ACM SIGMOD Record, 22, 207-216. https://doi.org/10.1145/170036.170072 |
[3] | Feng, H., Liao, R.T., Liu, F., et al. (2018) Optimization Algorithm Improvement of Association Rule Mining Based on Particle Swarm Optimization. International Conference on Measur-ing Technology & Mechatronics Automation, IEEE Computer Society, 524-529. https://doi.org/10.1109/ICMTMA.2018.00132 |
[4] | Wang, D.X., Xie, Q., Huang, D.M., et al. (2012) Analysis of Association Rule Mining on Quantitative Concept Lattice. International Conference on Artificial Intelligence & Computa-tional Intelligence, Springer, Berlin, Heidelberg, 142-149. https://doi.org/10.1007/978-3-642-33478-8_19 |
[5] | 胡可云, 陆玉昌, 石纯一. 基于概念格的分类和关联规则的集成挖掘方法[J]. 软件学报, 2000(11): 1478-1484. |
[6] | 王德兴, 胡学钢, 刘晓平, 等. 基于概念格和Apriori的关联规则挖掘算法分析[J]. 合肥工业大学学报(自然科学版), 2006(6): 699-702. |
[7] | 杨葛英, 沈夏炯, 史先进, 等. 以概念格为背景的关联规则可视化[J]. 计算机工程与应用, 2021, 57(1): 84-91. |
[8] | 洪文学, 李少雄, 张涛, 栾景民, 刘文远. 大数据偏序结构生成原理[J]. 燕山大学学报, 2014, 38(5): 388-393+402. |
[9] | 刘倩, 赵岩松, 洪文学, 等. 基于属性偏序结构图对《妇人大全良方》中治疗胎停育相关方药分析[J]. 现代中西医结合杂志, 2017, 26(8): 799-802, 815. |
[10] | 顾广华, 曹宇尧, 李刚, 等. 基于语义标签生成和偏序结构的图像层级分类[J]. 软件学报, 2020, 31(2): 289-301. |
[11] | 徐笋晶, 李赛美, 洪文学, 等. 基于数学属性偏序表示原理的李赛美教授治疗2型糖尿病处方用药分析[J]. 中国实验方剂学杂志, 2014, 20(2): 207-211. |
[12] | 徐伟华, 等. 形式概念分析理论与应用[M]. 北京: 科学出版社, 2016. |