全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

金属–酚表面化学应用于可降解聚三亚甲基碳酸酯改性构建一氧化氮催化释放涂层
Metal-Phenolic-(Amine) Surface Chemistry for Generating Nitric Oxide on Biodegradable Polymer Matrix Vascular Stent Coating

DOI: 10.12677/MS.2021.114050, PP. 417-426

Keywords: 一氧化氮,表面化学,血液相容性,聚三亚甲基碳酸酯
Nitric Oxide
, Surface Chemistry, Blood Compatibility, PTMC

Full-Text   Cite this paper   Add to My Lib

Abstract:

聚三亚甲基碳酸酯(PTMC)因其具有表面溶蚀性特点、良好的生物相容性以及药物缓释性在可降解植入器械如血管支架表面改性上表现出广阔的应用前景。基于金属–酚表面化学构建的一氧化氮(NO)催化释放功能涂层已经被证实应用血管支架表面改性具有抗凝血、抑制平滑肌细胞增殖和促进内皮再生等多重生物学功能。然而,该NO催化释放涂层能否应用于可降解PTMC材料表面改性还未有过报道。因此,本研究采用旋涂的方法在支架材料表面首先制备PTMC涂层,随后基于金属–酚表面化学,利用没食子酸(gallic acid, GA)和硒代胱胺(selenocystamine, SeCA)共价结合形成网络结构,以Cu2+作为交联剂将上述网络结构进行交联,探究PTMC涂层表面构建具有CuII-GA/SeCA网络结构的NO催化涂层。研究结果证明,得益于GA多酚具有的广谱材料粘附特性,在PTMC涂层表面成功地构建了CuII-GA/SeCA涂层,且实现了NO催化释放速率在2~6.2 × 10?10 mol × cm?2 × min?1之间可调控。催化释放的NO通过特异性上调血小板环磷酸鸟苷(cGMP)表达抑制血小板的粘附与激活,证实了基于金属–酚表面化学的NO-催化释放涂层能应用于可降解聚合物涂层表面改性。
Polytrimethylene carbonate (PTMC) shows broad application prospects in surface modification of degradable implantable devices such as vascular stents due to its surface erosion characteristics, good biocompatibility and drug slow release. The functional coating for the catalytic release of nitric oxide (NO) based on metal-phenol surface chemistry has been proven to have multiple biological functions such as anticoagulation, inhibition of smooth muscle cell proliferation, and promotion of endothelial regeneration by surface modification of vascular stents. However, it has not been reported whether the NO catalytic release coating can be applied to the surface modification of degradable PTMC materials. Therefore, in this study, the spin coating method was used to first prepare the PTMC coating on the surface of the stent material, and then based on the metal-phenol surface chemistry, the use of gallic acid (GA) and selenocystamine (SeCA) covalently combined to form network structure, using Cu2+ as a cross-linking agent to cross-link the above-mentioned network structure, and explore the construction of a NO catalytic coating with CuII-GA/SeCA network structure on the surface of the PTMC coating. The research results prove that, thanks to the broad-spectrum material adhesion characteristics of GA polyphenols, CuII-GA/SeCA coatings were successfully constructed on the surface of PTMC coatings, and the NO catalytic release rate was adjusted between 2~6.2 × 10?10 mol × cm?2 × min?1. Catalytic release of NO inhibits platelet adhe-sion and activation by specifically up-regulating the expression of platelet cyclic guanosine phos-phate (cGMP), confirming that the NO-catalytic release coating based on metal-phenolic-(amine) surface chemistry can be applied to the surface of degradable polymer coatings modified.

References

[1]  Bergmann, M.W. and Landmesser, U. (2014) Left Atrial Appendage Closure for Stroke Prevention in Non-Valvular Atrial Fibrillation: Rationale, Devices in Clinical Development and Insights into Implantation Techniques. EuroInter-vention, 10, 497-504.
https://doi.org/10.4244/EIJV10I4A86
[2]  Sanchez, J., Elgue, G., Riesenfeld, J. and Olsson, P. (1997) Inhibition of the Plasma Contact Activation System of Immobilized Heparin: Relation to Surface Density of Functional Antithrombin Binding Sites. Journal of Biomedical Materials Research: An Official Journal of the Society for Biomaterials and the Japanese Society for Biomaterials, 37, 37-42.
https://doi.org/10.1002/(SICI)1097-4636(199710)37:1<37::AID-JBM5>3.0.CO;2-K
[3]  陈姗姗, 张炳春, 杨柯. 医用无镍不锈钢在血管支架领域的研究进展[J]. 中国医疗设备, 2018, 33(5): 14-17.
[4]  Costa, M., Yan, Y., Zhao, D. and Salnikow, K. (2003) Molecular Mechanisms of Nickel Carcinogenesis: Gene Silencing by Nickel Delivery to the Nucleus and Gene Activation/Inactivation by Nickel-Induced Cell Signaling. Journal of Environmental Monitoring JEM, 5, 222-223.
https://doi.org/10.1039/b210260a
[5]  Thomas, P., Braathen, L.R., Drig, M., Aubck, J. and Willert, H.G. (2010) Increased Metal Allergy in Patients with Failed Metal-on-Metal Hip Arthroplasty and Peri-Implant T-Lymphocytic Inflammation. Allergy, 64, 1157-1165.
https://doi.org/10.1111/j.1398-9995.2009.01966.x
[6]  Wang, J., He, Y., Maitz, M.F., Collins, B., Xiong, K., Guo, L. and Huang, N. (2013) A Surface-Eroding Poly(1,3-Trimethylene Carbonate) Coating for Fully Biodegradable Magnesium-Based Stent Applications: Toward Better Biofunction, Biodegradation and Biocompatibility. Acta Biomaterialia, 9, 8678-8689.
https://doi.org/10.1016/j.actbio.2013.02.041
[7]  Lee, S.J., Lee, D., Yoon, T.R., Kim, H.K., Jo, H.H., Park, J.S. and Park, S.A. (2016) Surface Modification of 3D-Printed Porous Scaffolds via Mussel-Inspired Polydopamine and Effective Immobilization of rhBMP-2 to Promote Osteogenic Differentiation for Bone Tissue Engineering. Acta Bio-materialia, 40, 182-191.
https://doi.org/10.1016/j.actbio.2016.02.006
[8]  De Mel, A., Murad, F. and Seifalian, A.M. (2011) Nitric Oxide: A Guardian for Vascular Grafts? Chemical Reviews, 111, 5742-5767.
https://doi.org/10.1021/cr200008n
[9]  Carpenter, A.W. and Schoenfisch, M.H. (2012) Nitric Oxide Release Part II. Therapeutic Applications. Chemical Society Reviews, 41, 3742-3752.
https://doi.org/10.1039/c2cs15273h
[10]  Cai, K., Frant, M., Bossert, J.R., Hildebrand, G., Liefeith, K. and Jandt, K.D. (2006) Surface Functionalized Titanium Thin Films: Zeta-Potential, Protein Adsorption and Cell Proliferation. Colloids and Surfaces B Biointerfaces, 50, 1-8.
https://doi.org/10.1016/j.colsurfb.2006.03.016
[11]  Liu, T., Liu, Y., Chen, Y., Liu, S., Maitz, M.F., Wang, X. and Chen, J. (2014) Immobilization of Heparin/Poly-L-Lysine Nanoparticles on Dopamine-Coated Surface to Create a Heparin Density Gradient for Selective Direction of Platelet and Vascular Cells Behavior. Acta Biomaterialia, 10, 1940-1954.
https://doi.org/10.1016/j.actbio.2013.12.013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133