全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数值模拟的矩形腔体内对流传热研究进展
Research Progress of Fluid Convective Heat Transfer in Rectangular Enclosures Based on Numerical Simulation

DOI: 10.12677/APP.2021.114027, PP. 232-245

Keywords: 自然对流,流体传热,矩形腔体,数值模拟
Natural Convection
, Fluid Heat Transfer, Rectangular Enclosure, Numerical Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

自然对流是流体流动和传热的最重要形式之一,如今在矩形腔体对流换热的研究中,科学家进行一系列理论和实验数值求解来探究对流传热中的传热规律和流体运动过程,本文对最近一段时间的矩形腔内自然对流研究以及对这些研究的数值实验技术进行归纳总结。这些研究在各种参数(如瑞利数和普朗特数,腔体倾角,热特性等)的影响下,并考虑了具有不同初始条件和边界条件,热源位置以及流体介质和壁的辐射特性的腔体外壁的多种配置。最后,为所研究矩形腔体内自然对流传热领域的未来研究提供了一些建议。
Natural convection is one of the most important forms of fluid flow and heat transfer. Nowadays, in the study of convection heat transfer in rectangular enclosures, scientists have carried out a series of theoretical and experimental numerical solutions to explore the heat transfer laws and fluid motion processes in convective heat transfer. In this article, the recent researches on natural convection in rectangular enclosures under numerical experiment technology were summarized. These studies, under the influence of various parameters (such as Rayleigh number and Prandtl number, enclosure inclination, and thermal characteristics, etc.), consider the different initial and boundary conditions (such as the location of the heat source, the radiation characteristics of the fluid medium and the wall, and various configurations of the outer wall of the enclosures). Finally, some suggestions are provided for future research in the field of natural convection heat transfer in the studied rectangular enclosures.

References

[1]  张敬畅, 曹维良, 于定新, 石锦华, 窦正仓. 超临界流体干燥法制备纳米级TiO2的研究[J]. 无机材料学报,1999,14(1): 23-35.
[2]  李志义, 刘学武, 张晓冬, 夏远景, 胡大鹏. 超临界流体在微电子器件清洗中的应用[J]. 洗净技术, 2004, 2(5): 5-10.
[3]  Huang, H.S., Weng, Y.C., Chang, Y.W., Chen, S.L. and Ke, M.T. (2010) Thermoelectric Water-Cooling Device Applied to Electronic Equipment. International Communications in Heat and Mass Transfer, 37, 140-146.
https://doi.org/10.1016/j.icheatmasstransfer.2009.08.012
[4]  赵兆颐, 朱瑞安. 反应堆热工流体力学[M]. 北京: 清华大学出版社, 1992.
[5]  郗恒东, 孙超, 夏克青. 湍流热对流中的动力学和传热研究[J]. 物理, 2006, 35(4): 265-268.
[6]  Batchelor, G.K. (1950) The Application of The Similarity Theory of Turbulence to Atmospheric Diffusion. Quarterly Journal of the Royal Meteorological Society, 76, 133-146.
https://doi.org/10.1002/qj.49707632804
[7]  Batchelor, G.K. (1954) Heat Transfer by Free Convection across A Closed Cavity between Vertical Boundaries At Different Temperatures. Quarterly of Applied Mathematics, 12, 209-233.
https://doi.org/10.1090/qam/64563
[8]  Poots, G. (1958) Heat Transfer by Laminar Free Convection in Enclosed Plane Gas Layers. The Quarterly Journal of Mechanics and Applied Mathematics, 11, 257-273.
https://doi.org/10.1093/qjmam/11.3.257
[9]  Wilkes, J.O. and Churchill, S.W. (1966) The Finite-Difference Computation of Natural Convection in a Rectangular Enclosure. AIChE Journal, 12, 161-166.
https://doi.org/10.1002/aic.690120129
[10]  de Vahl Davis, G. (1968) Laminar Natural Convection in an Enclosed Rectangular Cavity. International Journal of Heat and Mass Transfer, 11, 1675-1693.
https://doi.org/10.1016/0017-9310(68)90047-1
[11]  Das, D., Roy, M. and Basak, T. (2017) Studies on Natural Convection within Enclosures of Various (Non-Square) Shapes—A Review. International Journal of Heat and Mass Transfer, 106, 356-406.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.034
[12]  Ba?ri, A., Zarco-Pernia, E. and De María, J.M.G. (2014) A Review on Natural Convection in Enclosures for Engineering Applications. The Particular Case of the Parallel-ogrammic Diode Cavity. Applied Thermal Engineering, 63, 304-322.
https://doi.org/10.1016/j.applthermaleng.2013.10.065
[13]  Biswal, P. and Basak, T. (2017) Entropy Generation vs Energy Efficiency For natural Convection Based Energy Flow in Enclosures and Various Applications: A Review. Re-newable and Sustainable Energy Reviews, 80, 1412-1457.
https://doi.org/10.1016/j.rser.2017.04.070
[14]  Vanaki, S.M., Ganesan, P. and Mohammed, H.A. (2016) Numeri-cal Study of Convective Heat Transfer of Nanofluids: A Review. Renewable and Sustainable Energy Reviews, 54, 1212-1239.
https://doi.org/10.1016/j.rser.2015.10.042
[15]  林成森. 数值计算方法[M]. 北京: 科学出版社, 1998.
[16]  苏燕兵, 陆军, 白博峰. 封闭腔内水自然对流换热数值模拟[J]. 化工学报, 2007, 58(11): 2715-2720.
[17]  Liszka, T. and Orkisz, J. (1980) The Finite Difference Method at Arbitrary Irregular Grids and Its Ap-plication in Applied Mechanics. Computers & Structures, 11, 83-95.
https://doi.org/10.1016/0045-7949(80)90149-2
[18]  Hiroyuki, O., Akira, M., Masaru, O., Churchill, S.W. and Li-or, N. (1985) Numerical Calculations of Laminar and Turbulent Natural Convection in Water in Rectangular Channels Heated and Cooled Isothermally on the Opposing Vertical Walls. International Journal of Heat and Mass Transfer, 28, 125-138.
https://doi.org/10.1016/0017-9310(85)90014-6
[19]  Paolucci, S. (1990) Direct Numerical Simulation of Two-Dimensional Turbulent Natural Convection in an Enclosed Cavity. Journal of Fluid Mechanics, 215, 229-262.
https://doi.org/10.1017/S0022112090002634
[20]  Yedder, R.B. and Bilgen, E. (1995) Turbulent Natural Convec-tion and Conduction in Enclosures Bounded by a Massive Wall. International Journal of Heat and Mass Transfer, 38, 1879-1891.
https://doi.org/10.1016/0017-9310(94)00298-A
[21]  Kuznetsov, G.V. and Sheremet, M.A. (2010) Numerical Simulation of Turbulent Natural Convection in a Rectangular Enclosure Having Finite Thickness Walls. International Journal of Heat and Mass Transfer, 53, 163-177.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.043
[22]  Zhang, Z., Chen, W., Zhu, Z. and Li, Y. (2014) Nu-merical Exploration of Turbulent Air Natural-Convection in a Differentially Heated Square Cavity at Ra= 5.33×109. Heat and Mass Transfer, 50, 1737-1749.
https://doi.org/10.1007/s00231-014-1339-8
[23]  Yang, H., Chen, T. and Zhu, Z. (2009) Numerical Study of Forced Turbulent Heat Convection in a Straight Square duct. International Journal of Heat and Mass Transfer, 52, 3128-3136.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.029
[24]  Tomé, M.F., Castelo, A., Ferreira, V.G. and McKee, S. (2008) A Finite Difference Technique for Solving the Oldroyd-B Model for 3D-Unsteady Free Surface Flows. Jour-nal of Non-Newtonian Fluid Mechanics, 154, 179-206.
https://doi.org/10.1016/j.jnnfm.2008.04.008
[25]  Tomé, M.F., Mangiavacchi, N., Cuminato, J.A., Castelo, A. and McKee, S. (2002) A Finite Difference Technique for Simulating Unsteady Viscoelastic Free Surface flows. Journal of Non-Newtonian Fluid Mechanics, 106, 61-106.
https://doi.org/10.1016/S0377-0257(02)00064-2
[26]  Sheremet, M.A. and Miroshnichenko, I.V. (2015) Numeri-cal Study of Turbulent Natural Convection in a Cube Having Finite Thickness Heat-Conducting Walls. Heat and Mass Transfer, 51, 1559-1569.
https://doi.org/10.1007/s00231-015-1520-8
[27]  Sheremet, M.A. (2011) Mathematical Simulation of Conjugate Turbulent Natural Convection in an Enclosure with Local Heat Source. Thermophysics and Aeromechanics, 18, Article No. 107.
https://doi.org/10.1134/S0869864311010124
[28]  Ozoe, H., Mouri, A., Hiramitsu, M., Churchill, S.W. and Lior, N. (1986) Numerical Calculation of Three-Dimensional Turbulent Natural Convection in a Cubical Enclosure Using a Two-Equation Model for Turbulence. Journal of Heat Transfe, 108, 806-813.
https://doi.org/10.1115/1.3247016
[29]  Zienkiewicz, O.C. and Taylor, R.L. (2000) The Finite Element Method. Vol. 2, Butterworth-Heinemann, Oxford.
[30]  Fusegi, T. and Farouk, B. (1989) Laminar and Turbulent Natural Convec-tion-Radiation Interactions in a Square Enclosure Filled with a Nongray Gas. Numerical Heat Transfer, 15, 303-322.
https://doi.org/10.1080/10407788908944690
[31]  Razzaque, M.M., Klein, D.E. and Howell, J.R. (1983) Finite Element Solution of Radiative Heat Transfer in a Two-Dimensional Rectangular Enclosure with Gray Participating Media. Journal of Heat Transfer, 105, 933-936.
https://doi.org/10.1115/1.3245690
[32]  Barakos, G., Mitsoulis, E. and Assimacopoulos, D. O. (1994) Natural Convection flow in a Square Cavity Revisited: Laminar and Turbulent Models with Wall Functions. International Jour-nal for Numerical Methods in Fluids, 18, 695-719.
https://doi.org/10.1002/fld.1650180705
[33]  Kuyper, R.A., Van Der Meer, T.H., Hoogendoorn, C.J. and Henkes, R.A.W.M. (1993) Numerical Study of Laminar and Turbulent Natural Convection in an Inclined Square Cavity. International Journal of Heat and Mass Transfer, 36, 2899-2911.
https://doi.org/10.1016/0017-9310(93)90109-J
[34]  Alam, P., Kumar, A., Kapoor, S. and Ansari, S.R. (2012) Numerical Investigation of Natural Convection in a Rectangular Enclosure Due to Partial Heating and Cooling at Vertical Walls. Communications in Nonlinear Science and Numerical Simulation, 17, 2403-2414.
https://doi.org/10.1016/j.cnsns.2011.09.004
[35]  Xamán, J., Arce, J., álvarez, G. and Chávez, Y. (2008) Laminar and Turbulent Natural Convection Combined with Surface Thermal Radiation in a Square Cavity with a Glass Wall. In-ternational Journal of Thermal Sciences, 47, 1630-1638.
https://doi.org/10.1016/j.ijthermalsci.2008.01.012
[36]  Moraveji, M. K. and Hejazian, M. (2013) Natural Convec-tion in a Rectangular Enclosure Containing an Oval-Shaped Heat Source and Filled with Fe3O4/Water Nanofluid. Inter-national Communications in Heat and Mass Transfer, 44, 135-146.
https://doi.org/10.1016/j.icheatmasstransfer.2013.03.011
[37]  Asadian, A.M., Abouali, O., Yaghoubi, M. and Ahmadi, G. (2014) The Effect of Temperature Dependent Electrical Conductivity on the MHD Natural Convection of Al2O3-Water Nanofluid in a Rectangular Enclosure. ASME 2014 12th International Conference on Nanochannels, Mi-crochannels, and Minichannels Collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, Chicago, 3-7 August 2014, Article ID: V001T14A003.
https://doi.org/10.1115/ICNMM2014-21758
[38]  Azad, A.K., Parvin, S. and Chowdhury, M.M.K. (2017) Effects of Hartmann Number on Combined Convection in a Channel with Cavity Using Cu-Water Nanofluid. AIP Conference Proceedings, 1851, Article ID: 020081.
https://doi.org/10.1063/1.4984710
[39]  Al-Kalbani, K.S. and Rahman, M.M. (2019) Convective Heat Transfer in the Flow of a Nanofluid in an Inclined Square Enclosure. Journal of Engineering Physics and Thermophysics, 92, 1150-1170.
https://doi.org/10.1007/s10891-019-02030-5
[40]  Venkatachalapathy, S. and Udayakumar, M. (2010) Numerical Investigation of Natural Convection Heat Transfer from Multiple Heat Sources in a Square Enclosure. Journal of Engi-neering and Applied Sciences, 5, 56-63.
[41]  Eymard, R., Gallou?t, T. and Herbin, R. (2000) Finite Volume Methods. Handbook of Numerical Analysis, 7, 713-1018.
https://doi.org/10.1016/S1570-8659(00)07005-8
[42]  Deng, Q.H. and Chang, J.J. (2008) Natural Convection in a Rectangular Enclosure with Sinusoidal Temperature Distributions on Both Side Walls. Numerical Heat Transfer, Part A: Applications, 54, 507-524.
https://doi.org/10.1080/01457630802186080
[43]  Kumar Singh, N. and Premachandran, B. (2016) Analysis of Turbulent Natural and Mixed Convection Flows Using the v2-f Model. Journal of Heat Transfer, 138, Article ID: 062502.
https://doi.org/10.1115/1.4032639
[44]  Safaei, M.R., Rahmanian, B. and Goodarzi, M. (2011) Numerical Study of Laminar Mixed Convection Heat Transfer of Power-Law Non-Newtonian Fluids in Square Enclosures by Finite Volume Method. International Journal of Physical Sciences, 6, 7456-7470.
https://doi.org/10.5897/IJPS11.1092
[45]  Ma, Y., Shahsavar, A., Moradi, I., Rostami, S., Moradikazerouni, A., Yarmand, H. and Zulkifli, N.W.B.M. (2019) Using Finite Volume Method for Simulating the Natural Convective Heat Transfer of Nano-Fluid Flow Inside an Inclined Enclosure with Conductive Walls in the Presence of a Constant Temper-ature Heat Source. Physica A: Statistical Mechanics and Its Applications, Article ID: 123035. (In Press)
https://doi.org/10.1016/j.physa.2019.123035
[46]  Dol, H.S. and Hanjali?, K. (2001) Computational Study of Tur-bulent Natural Convection in a Side-Heated Near-Cubic Enclosure at a High Rayleigh Number. International Journal of Heat and Mass Transfer, 44, 2323-2344.
https://doi.org/10.1016/S0017-9310(00)00271-4
[47]  Gazdallah, M., Feldheim, V., Claramunt, K. and Hirsch, C. (2012) Finite Volume Method for Radiative Heat Transfer in an Unstructured Flow Solver for Emitting, Absorbing and Scattering Media. Journal of Physics: Conference Series, 369, Article ID: 012020.
https://doi.org/10.1088/1742-6596/369/1/012020
[48]  Kogawa, T., Okajima, J., Sakurai, A., Komiya, A. and Maruyama, S. (2017) Influence of Radiation Effect on Turbulent Natural Convection in Cubic Cavity at Normal Temper-ature Atmospheric gas. International Journal of Heat and Mass Transfer, 104, 456-466.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.059
[49]  Valencia, L., Pallares, J., Cuesta, I. and Grau, F.X. (2007) Turbulent Rayleigh-Bénard Convection of Water in Cubical Cavities: A Numerical and Experimental Study. In-ternational Journal of Heat and Mass Transfer, 50, 3203-3215.
https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.013
[50]  Mohamad, A. A. (2011) Lattice Boltzmann Method. Springer, London.
https://doi.org/10.1007/978-0-85729-455-5
[51]  Dixit, H.N. and Babu, V. (2006) Simulation of High Rayleigh Number Natural Convection in a Square Cavity Using the Lattice Boltzmann Method. International Jour-nal of Heat and Mass Transfer, 49, 727-739.
https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.046
[52]  Chen, S. (2009) A Large-Eddy-Based Lattice Boltz-mann Model for Turbulent Flow Simulation. Applied Mathematics and Computation, 215, 591-598.
https://doi.org/10.1016/j.amc.2009.05.040
[53]  Chen, S. and Krafczyk, M. (2009) Entropy Generation in Turbulent Natural Convection Due to Internal Heat Generation. International Journal of Thermal Sciences, 48, 1978-1987.
https://doi.org/10.1016/j.ijthermalsci.2009.02.012
[54]  Sajjadi, H. and Kefayati, R. (2015) Lattice Boltzmann Sim-ulation of Turbulent Natural Convection in Tall Enclosures. Thermal science, 19, 155-166.
https://doi.org/10.2298/TSCI120105066S
[55]  Yao, S.G., Duan, L.B., Ma, Z.S. and Jia, X.W. (2014) The Study of Natural Convection Heat Transfer in A Partially Porous Cavity Based on LBM. The Open Fuels and Energy Science Journal, 7, 88-93.
https://doi.org/10.2174/1876973X01407010088
[56]  Wei, Y., Dou, H.S., Wang, Z., Qian, Y. and Yan, W. (2016) Simulations of Natural Convection Heat Transfer in An Enclosure at Different Rayleigh Number Using Lattice Boltz-mann Method. Computers & Fluids, 124, 30-38.
https://doi.org/10.1016/j.compfluid.2015.09.004
[57]  Sheikholeslami, M., Gorji-Bandpy, M. and Ganji, D.D. (2013) Numerical Investigation of MHD Effects on Al2O3-Water Nanofluid Flow and Heat Transfer in a Semi-Annulus Enclosure Using LBM. Energy, 60, 501-510.
https://doi.org/10.1016/j.energy.2013.07.070
[58]  Zhou, Y., Zhang, R., Staroselsky, I. and Chen, H. (2004) Numerical Simulation of Laminar and Turbulent Buoyancy-Driven Flows Using a Lattice Boltzmann Based Algorithm. International Journal of Heat and Mass Transfer, 47, 4869-4879.
https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.020
[59]  Choi, S. K., Kim, S. O., Lee, T. H., Kim, Y. I. and Hahn, D. (2012) Computation of Turbulent Natural Convection in a Rectangular Cavity with the Lattice Boltzmann Method. Numerical Heat Transfer, Part B: Fundamentals, 61, 492-504.
https://doi.org/10.1080/10407790.2012.687998
[60]  Ma, Y. and Yang, Z. (2019) LBM Simulation of MHD Nanofluid Heat Transfer in a Square Cavity with a Cooled Porous Obstacle: Effects of Various Temperature Boundary Conditions. Journal of Thermal Analysis and Calorimetry, 143, 545-558.
https://doi.org/10.1007/s10973-019-09164-x
[61]  Mohebbi, R., Izadi, M., Sidik, N. A. C. and Najafi, G. (2019) Natural Convection Heat Transfer of Nanofluid Inside a Cavity Containing Rough Elements Using Lattice Boltzmann Method. International Journal of Numerical Methods for Heat & Fluid Flow, 29, 3659-3684.
https://doi.org/10.1108/HFF-06-2018-0332

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133