全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

联合多时相Radarsat-1和Sentinel-1 SAR数据的树高反演
Combined Multi-Temporal Radarsat-1 and Sentinel-1 SAR Data Inversion Forest Tree Height

DOI: 10.12677/GST.2021.92007, PP. 59-66

Keywords: 数字高程模型,合成孔径雷达,树高,干涉技术
Digital Elevation Model
, Synthetic Aperture Radar, Tree Height, Interference Technology

Full-Text   Cite this paper   Add to My Lib

Abstract:

森林是陆地地表生态圈的重要组成部分,树高在一定程度上反映了森林生态系统的多样性与稳定性。为了提升广域的树木测高的可靠性与处理效率,本文提出了一种多源数据的树高反演方法。为验证算法的可行性,本文选取内蒙古乌兰察布市为典型实验区,利用2景2017年Sentinel-1影像和2景2004年RaderSAT-1影像开展典型性验证,根据冠层顶面数字模型(TCDSM)生成的DEM,选取林区20个采样点,经试验,sentinel-1的原位和估计高度之间的平均绝对误差(MAE)和均方根误差(RMSE)分别为1.3和1.34,结果可靠性强,具有一定的实践价值,本文提出的方法及研究结果可为林业调查、基础建设等领域的相关研究及应用提供参考。
Forests are an important part of the terrestrial ecosystem, and tree height reflects the diversity and stability of forest ecosystems to a certain extent. In order to improve the reliability and processing efficiency of wide-area tree height measurement, this paper proposes a tree height inversion method based on multi-source data fusion. In order to verify the feasibility of the algorithm, this paper selects Ulanchabu City in Inner Mongolia as a typical experimental area, using 2 scenes of 2017 Sentinel-1 images and 2 scenes of 2004 RaderSAT-1 images to carry out typical verification, according to the digital model of the canopy top The DEM generated by (TCDSM) selected 20 sam-pling points in the forest area. After testing, the average absolute error (MAE) and root mean square error (RMSE) between the in-situ and estimated height of sentinel-1 were 1.3 and 1.34, re-spectively. The results are highly reliable and have certain practical value. The methods and re-search results proposed in this article can provide references for related research and applications in forestry investigation, infrastructure construction and other fields.

References

[1]  毛学刚, 姚瑶, 范文义. 基于Landsat长时间序列的森林扰动参数提取与树高估算[J]. 林业科学, 2019, 55(3): 79-87.
[2]  李哲, 陈尔学, 王建. 几种极化干涉SAR森林平均高反演算法的比较评价[J]. 遥感技术与应用, 2009, 24(5): 611-616.
[3]  周广益, 熊涛, 张卫杰, 杨健. 基于极化干涉SAR数据的树高反演方法[J]. 清华大学学报(自然科学版), 2009, 49(4): 510-513.
[4]  温若橙, 苏军明, 伍雅晴. 全极化干涉SAR反演树高的几种算法研究[J]. 测绘与空间地理信息, 2017, 40(2): 212-214.
[5]  岳彩荣, 肖虹雁, 曹霸. 基于PolInSAR森林高度反演研究[J]. 西南林业大学学报, 2016, 36(3): 137-143.
[6]  李帆, 尚玉双, 杨兆臣. 极化干涉SAR森林树高提取算法的对比分析[J]. 测绘与空间地理信息, 2016, 39(1): 94-96.
[7]  苏宝峰, 李锦伟, 靳标, 郭交. 非邻域相干系数估计的PolInSAR树高反演算法[J]. 农业机械学报, 2015, 46(12): 268-273.
[8]  Fu, W.X., Guo, H.D., Xie, C., Lu, Y.C. and Li, X.W. (2014) Forest Height Inversion Using Dual-pol Polarimetric SAR Interferometry. IOP Conference Series: Earth and Environmental Science, 17, Article ID: 012072.
https://doi.org/10.1088/1755-1315/17/1/012072.
[9]  Xie, Q.H., Wang, C.C., Zhu, J.J., Fu, H.Q., Lopez-Sanchez, J.M. and Ballester-Berman, J.D. (2017) A Modified Dual-Baseline PolInSAR Method for Forest Height Estimation. Remote Sensing, 9, 819.
https://doi.org/10.3390/rs9080819
[10]  Xie, Q.H., Wang, C.C., Zhu, J.J. and Fu, H.Q. (2015) Forest Height Inver-sion by Combining S-RVOG Model with Terrain Factor and PD Coherence Optimization. Acta Geodaetica et Carto-graphica Sinica, 44, 686-693。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133