|
Material Sciences 2021
Cu纳米纤维导热相对PPS复合涂层摩擦学性能的影响
|
Abstract:
自润滑涂层材料在使用过程中由于摩擦热聚集易导致润滑失效,有效进行摩擦热疏导是提高自润滑涂层性能延长使役寿命的关键途径。本文采用添加纳米Cu纤维导热相的方法制备热传导聚苯硫醚(PPS)自润滑复合涂层。通过考察复合涂层热传导性能和摩擦学性能,分析导热相纳米Cu纤维的添加在磨损寿命延长中起到的作用。研究发现,添加纳米Cu纤维后,复合涂层热导率显著提高,在添加量为15 wt%时,取得最大值2.514 W/(m?K)。纳米Cu纤维/PPS复合涂层比磨损率明显降低,在添加量为10 wt%时,比磨损率最低为1.44 g?N?1?M?1,比未添加纳米Cu纤维导热相的复合涂层比磨损率降低约40%。从而起到延长磨损寿命的作用。
In order to solve the failure induced by aggregation of friction heat, heat conductive self-lubricating polymer coatings are fabricated by filling of Cu nanofiber. The heat conductive net chains formed in the coating can accelerate the spread and transmission of friction heat. The process of friction and wear is investigated to reveal the effect of heat conductivity on the mechanism of life extension. The thermal conductivity of the Cu nanofiber/PPS composite coating increased to 2.514 W/(m?K), when the weight ratio of Cu nanofiber was 15 wt%. The wear rate of the composite coating decreased to 1.44 g?N?1?M?1, due to the heat conductive net chains formed in the coating. The effect of heat conductivity is the key of life extension of the Cu nanofiber/PPS composite coating.
[1] | Li, J., Liu, Y.H., Wang, T.Q. and Lu, X.C. (2015) Chemical Effects on the Tribological Behavior during Copper Chemical Mechanical Planarization. Materials Chemistry and Physics, 153, 48-53.
https://doi.org/10.1016/j.matchemphys.2014.12.033 |
[2] | Zhang, Y., Tang, H., Ji, X.R., Li, C.S., Chen, L., Zhang, D., Yang, X.F. and Zhang, H.T. (2013) Synthesis of Reduced Graphene Oxide/Cu Nanoparticle Composites and Their Tribological Properties. RSC Advances, 3, 26086-26093.
https://doi.org/10.1039/c3ra42478b |
[3] | 薛群基, 吕晋军. 高温固体润滑研究的现状及发展趋势[J]. 摩擦学学报, 1999, 19(1): 91-96. |
[4] | Kennedy, F.E. (1984) Thermal and Thermomechanical Effects in Dry Sliding. Wear, 100, 453-476.
https://doi.org/10.1016/0043-1648(84)90026-7 |
[5] | Singh, A.P. and Varun, S. (2014) Heat Transfer and Friction Factor Correlations for Multiple Arc Shape Roughness Elements on the Absorber Plate Used in Solar Air Heaters. Ex-perimental Thermal and Fluid Science, 54, 117-126.
https://doi.org/10.1016/j.expthermflusci.2014.02.004 |
[6] | Chandra, S.R.M. and Vasudeva Rao, V. (2014) Ex-perimental Investigation of Heat Transfer Coefficient and Friction Factor of Ethylene Glycol Water Based TiO2 Nanofluid in Double Pipe Heat Exchanger with and without Helical Coil Inserts. International Communications in Heat & Mass Transfer, 50, 68-76.
https://doi.org/10.1016/j.icheatmasstransfer.2013.11.002 |
[7] | Syam Sundar, L., Singh, M.K. and Sousa, A.C.M. (2014) Enhanced Heat Transfer and Friction Factor of MWCNT-Fe3O4/Water Hybrid Nanofluids. International Com-munications in Heat and Mass Transfer, 52, 73.
https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012 |
[8] | Gonsalves, K.E., Chen, X. and Baraton, M.I. (1997) Mechanistic Investigation of the Preparation of Polymer/Ceramic Nanocomposites. Nanostructured Materials, 9, 181-184. https://doi.org/10.1016/S0965-9773(97)00048-2 |
[9] | Ma, A.J., Gu, J.W. and Chen, W.X. (2011) Ther-mal Conductivity Polypropylene/Aluminium Nitride Composites. Advanced Materials Research, 194-196, 1577-1580. https://doi.org/10.4028/www.scientific.net/AMR.194-196.1577 |
[10] | Chisholm, N., Mahfuz, H., Rangari, V.K., et al. (2005) Fabrication and Mechanical Characterization of Carbon/SiC-Epoxy Nanocomposites. Composite Structures, 67, 115-124. https://doi.org/10.1016/j.compstruct.2004.01.010 |
[11] | Rusu, M., Sofian, N., Rusu, D., et al. (2001) Properties of Iron Powder Filled High Density Polyethylene. Journal of Polymer Engineering, 21, 469. https://doi.org/10.1515/POLYENG.2001.21.5.469 |
[12] | Han, Z.D. and Fina, A. (2011) Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review. Progress in Polymer Science, 36, 914-944. https://doi.org/10.1016/j.progpolymsci.2010.11.004 |
[13] | Oh, H. and Kim, J. (2019) Fabrication of Polymethyl Methacrylate Composites with Silanized Boron Nitride by In-Situ Polymerization for High Thermal Conductivity. Composites Science and Technology, 172, 153-162.
https://doi.org/10.1016/j.compscitech.2019.01.021 |
[14] | 蔡立芳, 梁新, 刘亚莉, 等. 聚苯酯填充聚四氟乙烯复合材料的导热及摩擦学性能研究[J]. 郑州轻工业学院学报(自然科学版), 2008, 23(2): 20. |
[15] | Yu, W., Xie, H.Q., Yin, L.Q., et al. (2015) Exceptionally High Thermal Conductivity of Thermal Grease: Synergistic Effects of Graphene and Alumina. International Journal of Thermal Sciences, 91, 76-82.
https://doi.org/10.1016/j.ijthermalsci.2015.01.006 |
[16] | 张念椿, 刘彬云, 肖定军, 王植材. 透明导电膜材料纳米铜线的制备及其性能研究[J]. 材料研究与应用, 2014(8): 117-120. |