|
Material Sciences 2021
LiNi0.6Co0.2Mn0.6O2正极材料的Na和Br共掺杂改性
|
Abstract:
LiNi0.6Co0.2Mn0.6O2正极材料因其高比容量而受到科学研究者的广泛研究,但是依然存在着倍率性能差、界面稳定性差和结构稳定性差等问题,严重制约了其进一步的发展。针对这些问题,本文探究了Na和Br 的共掺杂量对材料性能的影响,并通过X射线衍射(XRD)、XRD精修、交流阻抗(EIS)、循环伏安曲线(CV)以及充放电测试等方法进行了分析和表征。结果表明,适当的Na+和Br-掺杂能够改善材料的电化学性能。当掺杂量为1%的样品具有比较优异的结构稳定性和电化学性能。其在5 C下的容量高达178.2 mAh/g;1 C循环50次后容量保持率为86.0%,并且有最小的电压衰减。
LiNi0.6Co0.2Mn0.6O2 cathode material has been extensively studied by scientific researchers owing to its high specific capacity, but there are still problems such as poor rate performance, poor interface stability, and poor structural stability, which severely restrict its further development. In response to these problems, this article explores the influence of the co-doping amount of Na+ and Br- on the material properties, and the structure and electrochemical properties were characterized and analyzed by using X-ray diffraction (XRD), XRD refinement, AC impedance (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge measurements. The results show that appropriate Na+ and Br- co-doping can improve the electrochemical properties of the materials. When the doping amount is 1%, the sample has more excellent structural stability and electrochemical performance. Its capacity at 5 C is as high as 178.2 mAh/g. The capacity retention is still 86.0% and the voltage attenuation is minimal after 50 cycles at 1 C.
[1] | Wang, Y.L., Huang, X., Li, F., et al. (2015) Enhanced High Rate Performance of Li[Li0.17Ni0.2Co0.05Mn0.58?xAlx]O2?0.5x Cathode Material for Lithium-Ion Batteries. RSC Advances, 5, 49651-49656. https://doi.org/10.1039/C5RA03971A |
[2] | Malik, A.S., Boyko, O., Atkar, N. and Young, W.F. (2001) A Com-parative Study of MR Imaging Profile of Titanium Pedicle Screws. Acta Radiologica, 42, 291-293. https://doi.org/10.1080/028418501127346846 |
[3] | 竺可桢. 物理学[M]. 北京: 科学出版社, 1973: 1-3. |
[4] | Johnson, C.S., Li, N.C., Lefief, C., et al. (2008) Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3?(1-x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x≤ 0.7). Chemistry of Materials, 20, 6095-6106.
https://doi.org/10.1002/chin.200901017 |
[5] | Liu, W., Oh, P., Liu, X., Lee, M.-J., Cho, W., Chae, S., Kim, Y. and Cho, J. (2015) Nickel-Rich Layered Lithium Transition-Metal Oxide for High Energy Lithium-Ion Batteries. Angewandte Chemie International Edition, 54, 4440-4457.
https://doi.org/10.1002/anie.201409262 |
[6] | Armstrong, A.R., Robertson, A.D., Robert, G., et al. (1999) The Layered Intercalation Compounds Li(Mn1?yCoy)O2: Positive Electrode Materials for Lithium-Ion Batteries. Journal of Solid State Chemistry, 145, 549-556.
https://doi.org/10.1006/jssc.1999.8216 |
[7] | Wang, Y., Zhang, H., Chen, W., et al. (2014) Gel-Combustion Syn-thesis and Electrochemical Performance of LiNi1/3Mn1/3Co1/3O2 as Cathode Material for Lithium-Ion Batteries. RSC Advances, 4, 37148-37156.
https://doi.org/10.1039/C4RA06386D |
[8] | Jung, S.-K., Gwon, H., Hong, J., Park, K.-Y., Seo, D.-H., Kim, H., Hyun, J., Yang, W. and Kang, K. (2014) Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries. Advanced Energy Materials, 4, Article ID: 1300787. https://doi.org/10.1002/aenm.201300787 |
[9] | Chen, Y., Zhang, Y., Wang, F., et al. (2014) Improve the Structure and Electrochemical Performance of Lini0.6Co0.2Mn0.2O2 Cathode Material by Nano-Al2O3 Ultrasonic Coating. Journal of Alloys & Compounds, 611, 135-141.
https://doi.org/10.1016/j.jallcom.2014.05.068 |
[10] | Chen, Y., Zhang, Y., Chen, B., Wang, Z. and Lu, C. (2014) An Approach to Application for LiNi0.6Co0.2Mn0.2O2 Cathode Material at High Cut off Voltage by TiO2 Coating. Journal of Power Sources, 256, 20-27.
https://doi.org/10.1016/j.jpowsour.2014.01.061 |
[11] | Kim, H., Kim, M.G., Jeong, H.Y., Nam, H. and Cho, J. (2015) A New Coating Method for Alleviating Suface Degradation of LiNi0.6Co0.2Mn0.2O2 Cathode Materials: Nanoscale Surface Treatment of Primary Paticles. Nano Letters, 15, 2111-2119. https://doi.org/10.1021/acs.nanolett.5b00045 |
[12] | Zhang, J., Li, Z., Rui, G., Hu, Z. and Liu, X. (2015) High Rate Capability and Excellent Thermal Stability of Li+-Conductive Li2ZrO3-Coated LiNi1/3Co1/3Mn1/3O2 via a Synchronous Lithiation Strategy. Journal of Physical Chemistry C, 119, 20350-20356. https://doi.org/10.1021/acs.jpcc.5b06858 |
[13] | Huang, Z., Wang, Z., Zheng, X., et al. (2015) Effect of Mg Doping on the Structural and Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Materials. Electrochimica Acta, 182, 795-802.
https://doi.org/10.1016/j.electacta.2015.09.151 |
[14] | Chen, Z., Xie, T., Li, L., Xu, M., Zhu, H. and Wang, W. (2013) Characterization of Na-Substituted LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium-Ion Battery. Ionics, 20, 629-634. https://doi.org/10.1007/s11581-013-1022-y |
[15] | Kim, G.H., Kim, J.H., Myung, S.T., Yoon, C.S. and Sun, Y.K. (2005) Improvement of High-Voltage Cycling Behavior of Surface-Modified Li[Ni1/3Co1/3Mn1/3]O2 Cathodes by Fluo-rine Substitution for Li-Ion Batteries. Journal of the Electrochemical Society, 152, A1707-A1713. https://doi.org/10.1149/1.1952747 |
[16] | Fu, F., Yao, Y., Wang, H., et al. (2017) Structure Dependent Electro-chemical Performance of Li-Rich Layered Oxides in Lithium-Ion Batteries. Nano Energy, 35, 370-378. https://doi.org/10.1016/j.nanoen.2017.04.005 |
[17] | Jo, M.K., Jeong, S. and Cho, J. (2010) High Power LiCoO2 Cathode Materials with Ultra Energy Density for Li-Ion Cells. Electrochemistry Communications, 12, 992-995. https://doi.org/10.1016/j.elecom.2010.05.010 |
[18] | Xie, D., Li, G., Qi, L., Fu, C., Fan, J. and Li, L. (2016) Im-proved Cycling Stability of Cobalt-Free Li-Rich Oxides with a Stable Interface by Dual Doping. Electrochimica Acta, 196, 505-516. https://doi.org/10.1016/j.electacta.2016.02.210 |
[19] | Zhao, E., Hu, Z., Xie, L., et al. (2015) A Study of the Structure-Activity Relationship of the Electrochemical Performance and Li/Ni Mixing of Lithium-Rich Materials by Neutron Diffraction. RSC Advances, 5, 31238-31244.
https://doi.org/10.1039/C5RA02380G |
[20] | Lin, F., Markus, I.M., Nordlund, D., et al. (2014) Surface Reconstruc-tion and Chemical Evolution of Stoichiometric Layered Cathode Materials for Lithium-Ion Batteries. Nature Commu-nication, 5, Article No. 3529.
https://doi.org/10.1038/ncomms4529 |
[21] | Liu, W., Oh, P., Liu, X., et al. (2015) Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries. Angewandte Chemie International Edition, 54, 4440-4457.
https://doi.org/10.1002/anie.201409262 |
[22] | He, W., Yuan, D., Qian, J., et al. (2013) Enhanced High-Rate Capa-bility and Cycling Stability of Na-Stabilized Layered Li1.2[Co0.13Ni0.13Mn0.54]O2 Cathode Material. Journal of Materials Chemistry A, 1, 11397-11403.
https://doi.org/10.1039/c3ta12296d |
[23] | Kang, K., Meng, Y.S., Breger, J., et al. (2006) Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries. Science, 311, 977-980. https://doi.org/10.1126/science.1122152 |
[24] | Yang, F.F., Liu, Y.J., Martha, S.K., et al. (2015) Nanoscale Mor-phological and Chemical Changes of High Voltage Lithium-Manganese Rich NMC Composite Cathodes with Cycling. Nano Letters, 14, 4334-4341.
https://doi.org/10.1021/nl502090z |
[25] | Zheng, J., Kan, W.H. and Manthiram, A. (2015) Role of Mn Content on the Electrochemical Properties of Nickel-Rich Layered LiNi0.8?xCo0.1Mn0.1+xO2 (0.0 ≤ X ≤ 0.08) Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 7, 6926-6934. https://doi.org/10.1021/acsami.5b00788 |
[26] | Wang, Y.X., Shang, K.H., He, W., et al. (2015) Magnesium-Doped Li1.2[Co0.13Ni0.13Mn0. 54]O2 for Lithium-Ion Battery Cathode with Enhanced Cycling Stability and Rate Capability. ACS Applied Materials & Interfaces, 7, 13014-13021.
https://doi.org/10.1021/acsami.5b03125 |
[27] | Xie, D., Li, G., Li, Q., et al. (2016) Improved Cycling Stability of Cobalt-Free Li-Rich Oxides with a Stable Interface by Dual Doping. Electrochimica Acta, 196, 505-516. https://doi.org/10.1016/j.electacta.2016.02.210 |
[28] | Liu, Y., Ning, D., Zheng, L., Zhang, Q., Gu, L., Gao, R., Zhang, J., Franz, A., Schumacher, G. and Liu, X. (2018) Improving the Electrochemical Performances of Li-Rich Li1.20Ni0.13Co0.13Mn0.54O2 through a Cooperative Doping of Na+ and with Na3PO4. Journal of Power Sources, 375, 1-10. https://doi.org/10.1016/j.jpowsour.2017.11.042 |