|
Pure Mathematics 2021
含Φ-Laplace算子的拟线性椭圆型方程解的存在性
|
Abstract:
[1] | Benci, V., Fortunato, D. and Pisani, L. (1998) Solitons Like Solutions of a Lorentz Invariant Equation in Dimension 3. Reviews in Mathematical Physics, 10, 315-344. https://doi.org/10.1142/S0129055X98000100 |
[2] | Huentutripay, J. and Manásevich, R. (2006) Nonlinear Eigenvalues for a Quasilinear Elliptic System in Orlicz-Sobolev Spaces. Journal of Dynamics and Differential Equations, 18, 901-929. https://doi.org/10.1007/s10884-006-9049-7 |
[3] | Carvalho, M.L., Goncalves, J.V. and Silva, E.D. (2015) On Quasilinear Elliptic Problems without the Ambrosetti-Rabinowitz Condition. Journal of Mathematical Analysis and Applications, 426, 466-483.
https://doi.org/10.1016/j.jmaa.2015.01.023 |
[4] | Silva, E.D., Carvalho, M.L., Gon?alves, J.V. and Goulart, C. (2019) Critical Quasilinear Elliptic Problems Using Concave-Convex Nonlinearities. Annali di Matematica Pura ed Applicata, 198, 693-726.
https://doi.org/10.1007/s10231-018-0794-0 |
[5] | Carvalho, M.L., Corrêa, F.J., Goncalves, J.V. and Silva, E.D. (2017) Sign Changing Solutions for Quasilinear Superlinear Elliptic Problems. The Quarterly Journal of Mathematics, 68, 391-420.
https://doi.org/10.1093/qmath/haw047 |
[6] | Ambrosetti, A. and Rabinowitz, P.H. (1973) Dual Variational Methods in Critical Points Theory and Application. Journal of Functional Analysis, 14, 349-381. https://doi.org/10.1016/0022-1236(73)90051-7 |
[7] | Adams, R.A. and Fournier, J.F. (2003) Sobolev Space. Aca-demic Press, New York. |
[8] | Fukagai, N. and Narukawa, K. (2007) On the Existence of Multiple Positive Solutions of Quasilinear Elliptic Eigenvalue Problems. Annali di Matematica Pura ed Applicata, 186, 539-564. https://doi.org/10.1007/s10231-006-0018-x |
[9] | Liu, S. (1909) On Quasilinear Elliptic Problems with Finite or Infinite Potential Wells. |
[10] | Brezis, H. and Lieb, E. (1983) A Relation between Pointwise Convergence of Functions and Convergence of functionals. Proceedings of the American Mathematical Society, 88, 486-490. https://doi.org/10.2307/2044999 |