|
Material Sciences 2021
稀土铕离子掺杂激活的LED用红色荧光材料研究
|
Abstract:
白光LED作为一种新型照明光源,具有体积小、发光效率高、节能、长寿命、绿色环保等优点。稀土铕离子掺杂的LED用红色荧光粉是实现高显色指数和低色温的白光LED不可或缺的组分材料,且其组合的LED具有良好的发光特性和发光效率。本文从制备工艺和不同基质体系出发,分析了掺铕红色荧光材料的制备方法及其优缺点,并根据所采用的基质材料及制备方法的不同,对铕掺杂的红色荧光机理进行了探讨,并对掺铕红色发光材料的应用前景进行了展望。
As a new lighting source, white LED has the advantages of small size, high luminous efficiency, en-ergy saving, long life and environmental protection. The red phosphor used for LED doped with rare earth europium ion is an indispensable component material to realize high color rendering index and low color temperature, and the combined LED has good luminescence characteristics and luminous efficiency. Based on the preparation technology and different matrix systems, the preparation methods and advantages and disadvantages of europium-doped red fluorescent ma-terials were analyzed in this paper. According to the different matrix materials and preparation methods, the mechanism of europium-doped red fluorescent materials was discussed, and the ap-plication prospect of europium-doped red luminescent materials was forecasted.
[1] | 郑国栋, 王琨, 陈其慎, 张艳飞, 邢佳韵, 龙涛, 董延涛, 倪晋鹏. 世界稀土产业格局变化与中国稀土产业面临的问题[J]. 地球学报, 2020, 42(2): 265-272. |
[2] | 周美静, 黄健柏, 邵留国, 杨丹辉. 中国稀土政策演进逻辑与优化调整方向[J]. 资源科学, 2020, 42(8): 1527-1539. |
[3] | Jaganathan, S.K., Peter, A.J., Mahalingam, V., et al. (2019) Synthesis and Luminescence Properties of LiGd3(MoO4)5: Eu3+ Phosphors for White LED Applications. Journal of Materials Science: Materials in Electronics, 30, 2037-2044.
https://doi.org/10.1007/s10854-018-0475-1 |
[4] | Pattison, P.M., Hansen, M. and Tsao, J.Y. (2018) LED Lighting Efficacy: Status and Directions. Comptes Rendus Physique, 19, 134-145. https://doi.org/10.1016/j.crhy.2017.10.013 |
[5] | Wang, Y.M., Zheng, H., Hu, R. and Luo, X.B. (2014) Modeling on Phosphor Sedimentation Phenomenon during Curing Process of High Power LED Packaging. Journal of Solid State Lighting, 1, 1-9.
https://doi.org/10.1186/2196-1107-1-2 |
[6] | Zhang, X.G., Zhang, J.L. and Gong, M.L. (2014) Synthesis and Lu-minescent Properties of UV-Excited Thermal Stable Red-Emitting Phosphor Ba3Lu(PO4)3: Eu3+ for NUV LED. Optical Material, 36, 850-853.
https://doi.org/10.1016/j.optmat.2013.12.024 |
[7] | Deng, K.M., Gong, T., Chen, Y.H., et al. (2011) Efficient Red-Emitting Phosphor for Near-Ultraviolet-Based Solid-State Lighting. Optics Letters, 36, 4470-4472. https://doi.org/10.1364/OL.36.004470 |
[8] | Devakumar, B., Halappa, P. and Shivakumara, C. (2017) Dy3+/Eu3+ Co-Doped CsGd(MoO4)2 Phosphor with Tunable Photoluminescence Properties for Near-UV WLEDs Applications. Dyes and Pigments, 137, 244-255.
https://doi.org/10.1016/j.dyepig.2016.10.016 |
[9] | Jayachandiran, M., Annadurai, G. and Kennedy, S.M.M. (2018) Photoluminescence Properties of Red Emitting Ba3Bi2(PO4)4: Eu3+ Phosphor for WLEDs Applications. Journal of Lu-minescence, 201, 196-202.
https://doi.org/10.1016/j.jlumin.2018.04.054 |
[10] | Zhang, Q., Wang, X., Ding, X., et al. (2017) A Potential Red-Emitting Phosphor BaZrGe3O9: Eu3+ for WLED and FED Applications: Synthesis, Structure, and Luminescence Properties. Inorganic Chemistry, 56, 6990-6998.
https://doi.org/10.1021/acs.inorgchem.7b00591 |
[11] | Yang, L.X., Zhu, D.-C., Liu, S.S., et al. (2019) Photolumi-nescence Properties and Crystal Structure of BaSiO3: xEu3+, yBi3+ Red Phosphor Synthesized by Co-Precipitation Method. Physica B: Physics of Condensed Matter, 556, 6-11.
https://doi.org/10.1016/j.physb.2018.12.022 |
[12] | Wang, H.F., Lu, J.W., Wang, R.X., et al. (2020) Synthesis and Characterization of the CaTiO3: Eu3+ Red Phosphor by an Optimized Microwave-Assisted Sintering Process. Materials, 13, 874. https://doi.org/10.3390/ma13040874 |
[13] | 张涛, 穆冬迪, 欧阳艳, 何晓燕. 超声辅助共沉淀法合成CaMoO4: Eu3+红色荧光粉及其发光性能研究[J]. 人工晶体学报, 2018, 47(1): 207-212. |
[14] | Wang, D.M., Fan, J., Shang, M.M., Li, K., Zhang, Y., Lian, H.Z. and Lin, J. (2016) Pechini-Type Sol-Gel Synthesis and Multicolor-Tunable Emission Properties of GdY(MoO4)3: RE3+ (RE = Eu, Dy, Sm, Tb) Phosphors. Optical Materials, 51, 162-170. https://doi.org/10.1016/j.optmat.2015.11.029 |
[15] | Hussain, S.K. and Yu, J.S. (2017) Sol-Gel Synthesis of Eu3+/Bi3+ Ions Co-Doped BaLa2WO7 Phosphors for Red-LEDs under NUV Excitation and FEDs Applications. Journal of Luminescence, 183, 39-47.
https://doi.org/10.1016/j.jlumin.2016.11.003 |
[16] | Bispo Jr., A.G., Ceccato, D.A., Lima, S.A.M. and Pires, A.M. (2017) Red Phosphor Based on Eu3+-Isoelectronically Doped Ba2SiO4 Obtained via Sol-Gel Route for Solid State Lightning. Rsc Advances, 7, 53752-53762.
https://doi.org/10.1039/C7RA10494D |
[17] | Huang, H.S., Tang, A.J., Yang, C. and Jin, H.F. (2017) Preparation, Characterization and Luminescence Properties of a New Hydrous Red Phosphor CaB3O5(OH): Eu3+ with Different Morphologies. Luminescence, 32, 217-222.
https://doi.org/10.1002/bio.3171 |
[18] | Liao, J.S., Nie, L.L., Wang, Q., Liu, S.J., Fu, J.X. and Wen, H.-R. (2017) Microwave Hydrothermal Method and Photoluminescence Properties of Gd2Sn2O7: Eu3+ Reddish Orange Phosphors. Journal of Luminescence, 183, 377-382.
https://doi.org/10.1016/j.jlumin.2016.11.076 |
[19] | Huang, H.S., Feng, X.Q., Chen, T.B., Xiong, Y. and Zhang, F. (2018) Synthesis and Luminescence Properties of Ca3(BO3)2: Eu3+ via Two-Step Method. Luminescence, 33, 692-697. https://doi.org/10.1002/bio.3465 |
[20] | Turkin, I.A., Keskinova, M.V., Sychov, M.M., et al. (2016) Microwave Synthesis of Eu-Doped Silicate Phosphors. JJAP Conference Proceedings, 4, Article ID: 011108. https://doi.org/10.7567/JJAPCP.4.011108 |
[21] | Zhang, Y., Xu, J., Cui, Q., et al. (2017) Eu3+-Doped Bi4Si3O12 Red Phosphor for Solid State Lighting: Microwave Synthesis, Characterization, Photoluminescence Properties and Thermal Quenching Mechanisms. Scientific Reports, 7, Article No. 42464. https://doi.org/10.1038/srep42464 |
[22] | Marí, B., Singh, K.C., Moya, M., Singh, I., Om, H. and Chand, S. (2012) Characterization and Photoluminescence Properties of Some CaO, SrO and CaSrO2 Phosphors Co-Doped with Eu3+ and Alkali Metal Ions. Optical Materials, 34, 1267-1271. https://doi.org/10.1016/j.optmat.2012.01.032 |
[23] | Chen, S., Lin, J. and Wu, J. (2014) Facile Synthesis of Y2O3: Dy3+ Nanorods and Its Application in Dye-Sensitized Solar Cells. Applied Surface Science, 293, 202-206. https://doi.org/10.1016/j.apsusc.2013.12.134 |
[24] | Chien, W.C., Yu, Y.Y. and Yang, C.C. (2010) A Novel Synthetic Route to Y2O3: Tb3+ Phosphors by Bicontinuous Cubic Phase Process. Materials & Design, 31, 1737-1741. https://doi.org/10.1016/j.matdes.2009.01.046 |
[25] | Kodaira, C.A., Stefani, R., Maia, A.S., et al. (2007) Optical Investigation of Y2O3: Sm3+ Nanophosphor Prepared by Combustion and Pechini Methods. Journal of Luminescence, 127, 616-622.
https://doi.org/10.1016/j.jlumin.2007.03.016 |
[26] | Ramgopal, G., Vidya, Y.S., Anantharaju, K.S., et al. (2015) Bio-Inspired Synthesis of Y2O3: Eu3+ Red Nanophosphor for Eco-Friendly Photocatalysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 141, 149-160.
https://doi.org/10.1016/j.saa.2015.01.055 |
[27] | Xie, W., Wang, Y., Zou, C., et al. (2015) A Red-Emitting Long-Afterglow Phosphor of Eu3+, Ho3+ Co-Doped Y2O3. Journal of Alloys and Compounds, 619, 244-247. https://doi.org/10.1016/j.jallcom.2014.09.092 |
[28] | Vidya, Y.S., Anantharaju, K.S., Nagabhushana, H., et al. (2015) Euphorbia tirucalli Mediated Green Synthesis of Rose Like Morphology of Gd2O3: Eu3+ Red Phosphor: Structural, Photoluminescence and Photocatalytic Studies. Journal of Alloys and Compounds, 619, 760-770. https://doi.org/10.1016/j.jallcom.2014.09.050 |
[29] | Jain, A. and Hirata, G.A. (2016) Photoluminescence, Size and Morphology of Red-Emitting Gd2O3: Eu3+ Nanophosphor Synthesized by Various Methods. Ceramics International, 42, 6428-6435.
https://doi.org/10.1016/j.ceramint.2016.01.053 |
[30] | Lian, J., Qin, H., Liang, P., et al. (2015) Co-Precipitation Synthesis of Y2O2SO4: Eu3+ Nanophosphor and Comparison of Photoluminescence Properties with Y2O3: Eu3+ and Y2O2S: Eu3+ Nanophosphors. Solid State Sciences, 48, 147-154.
https://doi.org/10.1016/j.solidstatesciences.2015.08.004 |
[31] | Park, K., Hakeem, D.A., Pi, J.W., et al. (2019) Emission Enhancement of Eu3+-Doped ZnO by Adding Charge Compensators. Journal of Alloys and Compounds, 772, 1040-1051. https://doi.org/10.1016/j.jallcom.2018.08.278 |
[32] | Raju, G.S.R., Pavitra, E., Nagaraju, G., et al. (2015) Versatile Properties of CaGd2ZnO5: Eu3+ Nanophosphor: Its Compatibility for Lighting and Optical Display Applications. Dalton Transactions, 44, 1790-1799.
https://doi.org/10.1039/C4DT03181D |
[33] | Kumar, S., Prakash, R., Kumar, V., et al. (2015) Surface and Spectral Studies of Eu3+ Doped α-Al2O3 Synthesized via Solution Combustion Synthesis. Advanced Powder Technology, 26, 1263-1268.
https://doi.org/10.1016/j.apt.2015.06.009 |
[34] | Huang, X., Guo, H. and Li, B. (2017) Eu3+-Activated Na2Gd(PO4)(MoO4): A Novel High-Brightness Red-Emitting Phosphor with High Color Purity and Quantum Efficiency for White Light-Emitting Diodes. Journal of Alloys and Compounds, 720, 29-38. https://doi.org/10.1016/j.jallcom.2017.05.251 |
[35] | Xie, F., Dong, Z., Wen, D., et al. (2015) A Novel Pure Red Phosphor Ca8MgLu(PO4)7: Eu3+ for Near Ultraviolet White Light-Emitting Diodes. Ceramics International, 41, 9610-9614. https://doi.org/10.1016/j.ceramint.2015.04.023 |
[36] | Wang, S., Xu, Y., Chen, T., et al. (2019) A Novel Red Phosphor Ba2La4Y4(SiO4)6O2: Eu3+ with High Quantum Yield and Thermal Stability for Warm White LEDs. Journal of Alloys and Compounds, 789, 381-391.
https://doi.org/10.1016/j.jallcom.2019.02.229 |
[37] | Ju, L.C., Xu, X., Hao, L.Y., et al. (2015) Modification of the Coordination Environment of Eu2+ in Sr2SiO4: Eu2+ Phosphors to Achieve Full Color Emission. Journal of Materials Chemistry C, 3, 1567-1575.
https://doi.org/10.1039/C4TC01435A |
[38] | Shablinskii, A.P., Kolesnikov, I.E., Bubnova, R.S., et al. (2019) A Novel Thermally Stable Ba3Bi2(BO3)4: Eu3+ Red Phosphor for Solid State Lighting Application. Journal of Lumines-cence, 216, Article ID: 116714.
https://doi.org/10.1016/j.jlumin.2019.116714 |
[39] | Huang, X., Wang, S., Li, B., et al. (2018) High-Brightness and High-Color Purity Red-Emitting Ca3Lu(AlO)3(BO3)4: Eu3+ Phosphors with Internal Quantum Efficiency Close to Unity for Near-Ultraviolet-Based White-Light-Emitting Diodes. Optics Letters, 43, 1307-1310. https://doi.org/10.1364/OL.43.001307 |
[40] | Du, P., Guo, Y., Lee, S.H. and Yu, J.S. (2017) Broad Near-Ultraviolet and Blue Excitation Band Induced Dazzling Red Emissions in Eu3+-Activated Gd2MoO6 Phosphors for White Light-Emitting Diodes. Rsc Advances, 7, 3170-3178.
https://doi.org/10.1039/C6RA25652J |
[41] | Dosev, D., Nichkova, M., Liu, M., et al. (2005) Application of Lumi-nescent Eu: Gd2O3 Nanoparticles to the Visualization of Protein Micropatterns. Journal of Biomedical Optics, 10, Article ID: 064006. https://doi.org/10.1117/1.2136347 |
[42] | Hoerder, G.J., Seibald, M., Baumann, D., et al. (2019) Sr(Li2Al2O2N2): Eu2+—A High Performance Red Phosphor to Brighten the Future. Nature Communications, 10, 1-9. https://doi.org/10.1038/s41467-019-09632-w |
[43] | Li, B. and Huang, X. (2018) Multicolour Tunable Luminescence of Thermal-Stable Ce3+/Tb3+/Eu3+-Triactivated Ca3Gd(GaO)3(BO3)4 Phosphors via Ce3+→ Tb3+→ Eu3+ Energy Transfer for Near-UV WLEDs Applications. Ceramics International, 44, 4915-4923. https://doi.org/10.1016/j.ceramint.2017.12.082 |
[44] | Deyneko, D.V., Nikiforov, I.V., Lazoryak, B.I., et al. (2019) Ca8MgSm1?х(PO4)7: xEu3+, Promising Red Phosphors for WLED Application. Journal of Alloys and Compounds, 776, 897-903. https://doi.org/10.1016/j.jallcom.2018.10.317 |
[45] | Singh, D., Basu, C., Meinhardt-Wollweber, M., et al. (2015) LEDs for Energy Efficient Greenhouse Lighting. Renewable and Sustainable Energy Reviews, 49, 139-147. https://doi.org/10.1016/j.rser.2015.04.117 |