全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二元层状钴掺杂锰氧化物的制备及电催化性能研究
Preparation and Electrocatalytic Performance of Binary Layered Cobalt-Doped Manganese Oxide

DOI: 10.12677/MS.2021.114053, PP. 453-461

Keywords: 二元锰钴氧化物层状材料,纳米片,电催化,OER
Binary Manganese Cobalt Oxide Layered Material
, Nanosheet, Electrocatalysis, OER

Full-Text   Cite this paper   Add to My Lib

Abstract:

锰在地球上的储量丰富、毒性低,且其层状结构具有强可调性,具备巨大的应用潜力。然而不恰当的电子结构和较低的导带水平阻碍了其在电催化水裂解中的应用,缺陷工程是提高MnO电子电导率和电化学性能的重要策略。本文以层状二氧化锰为基体,通过固相烧结掺杂不同比例钴元素制备了一系列二元锰钴氧化物,作为非贵金属OER催化剂。其中Mn0.5Co0.5O2二元层状锰钴氧化物材料在10 mA?cm?2处表现出最佳性能,过电势降低至380 mV,Tafel斜率低至55 mV?dec?1,优于锰钴单金属氧化物催化剂以及其他二元层状锰钴氧化物。外源元素掺杂提高了本征电子电导率,增加氧化还原活性中心浓度,加速离子扩散和电荷存储转移,从而达到降低过电位的目的。
Manganese is abundant on the earth, because of its low toxicity and strong adjustable layer struc-ture; it has huge application potential. However, improper electronic structure and low conduction band level hinder its application in electrocatalytic water splitting. Defect engineering is an important strategy to improve the electronic conductivity and electrochemical performance of MnO2. In this paper, a series of binary manganese cobalt oxides were prepared by solid-phase sintering doped with different proportion of cobalt on layered manganese dioxide as non-noble metal OER catalyst. The Mn0.5Co0.5O2 binary layered manganese cobalt oxide material shows the best performance at 10 mA?cm?2, with overpotential reduced to 380 mV and Tafel slope as low as 55 mV?dec?1, which is better than the single metal oxide catalyst and other binary layered oxides. Exogenous element doping improves the intrinsic electronic conductivity, increases the concentration of redox active centers, accelerates ion diffusion and charge transfer, and thus achieves low overpotential.

References

[1]  Zhang, W., Lai, W. and Cao, R. (2017) Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chemical Reviews, 117, 3717-3797.
https://doi.org/10.1021/acs.chemrev.6b00299
[2]  Seh, Z.W., Kibsgaard, J., Dickens, C., et al. (2017) Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science, 355, eaad4998.
https://doi.org/10.1126/science.aad4998
[3]  Dey, S., Naidu, B.S. and Rao, C. (2015) Ln0.5A0.5MnO3 (Ln = Lanthanide, A = Ca, Sr) Perovskites Exhibiting Remarkable Performance in the Thermochemical Generation of CO and H2 from CO2 and H2O. Chemistry, 21, 7077-7081.
https://doi.org/10.1002/chem.201500442
[4]  Meredig, B. and Wolverton, C. (2009) First-Principles Thermody-namic Framework for the Evaluation of Thermochemical H2O- or CO2-Splitting Materials. Physical Review, 80, 245119.
https://doi.org/10.1103/PhysRevB.80.245119
[5]  Jin, S., May, K.J., Gasteiger, H.A., et al. (2012) A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. ChemInform, 43, No. 11.
https://doi.org/10.1002/chin.201211009
[6]  Wang, H.Z., Zhou, M., Choudhury, P. and Luo, H. (2019) Perovskite Oxides as Bifunctional Oxygen Electrocatalysts for Oxygen Evolution/Reduction Reactions—A Mini Review. Applied Materials Today, 16, 56-71.
https://doi.org/10.1016/j.apmt.2019.05.004
[7]  Seitz, L.C., Dickens, C.F., Nishio, K., et al. (2016) A Highly Ac-tive and Stable IrOx/SrIrO3 Catalyst for the Oxygen Evolution Reaction. Science, 353, 1011-1014.
[8]  Wan, H., Liu, X.H., Wang, H.D., et al. (2019) Recent Advances in Developing High-Performance Nanostructured Electrocatalysts Based on 3d Transition Metal Elements. Nanoscale Horizons, 4, 789-808.
https://doi.org/10.1039/C8NH00461G
[9]  Meng, Y., Song, W., Huang, H., et al. (2014) Structure-Property Re-lationship of Bifunctional MnO2 Nanostructures: Highly Efficient, Ultra-Stable Electrochemical Water Oxidation and Oxygen Reduction Reaction Catalysts Identified in Alkaline Media. Journal of the American Chemical Society, 136, 11452-11464.
https://doi.org/10.1021/ja505186m
[10]  Suen, N.-T., Hung, S.-F., Quan, Q., et al. (2017) Electro-catalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chemical Society Reviews, 46, 337-365.
https://doi.org/10.1039/C6CS00328A
[11]  Mao, L., Mohan, S. and Mao, Y. (2019) Delafossite CuMnO2 as an Efficient Bifunctional Oxygen and Hydrogen Evolution Reaction Electrocatalyst for Water Splitting. Journal of the Electrochemical Society, 166, H233-H242.
https://doi.org/10.1149/2.1181906jes
[12]  Kim, S.-J., Kim, I.Y., Patil, S.B., et al. (2014) Composition-Tailored 2?D Mn1?xRuxO2 Nanosheets and Their Reassembled Nanocomposites: Improvement of Electrode Performance upon Ru Substitution. Chemistry—A European Journal, 20, 5132-5140.
https://doi.org/10.1002/chem.201304009
[13]  Cheng, F., Zhang, T., Zhang, Y., et al. (2013) Enhancing Electro-catalytic Oxygen Reduction on MnO2 with Vacancies. Angewandte Chemie International Edition, 52, 2474-2477.
https://doi.org/10.1002/anie.201208582
[14]  Yang, Y., Su, X., Zhang, L., et al. (2019) Intercalating MnO2 Nanosheets with Transition Metal Cations to Enhance Oxygen Evolution. ChemCatChem, 11, 1689-1700.
https://doi.org/10.1002/cctc.201802019
[15]  Feng, Q., Kanoh, H. and Ooi, K. (1999) Manganese Oxide Porous Crystals. Journal of Materials Chemistry, 9, 319-333.
[16]  Sakai, N., Fukuda, K., Ma, R. and Sasaki, T. (2018) Syn-thesis and Substitution Chemistry of Redox-Active Manganese/Cobalt Oxide Nanosheets. Chemistry of Materials, 30, 1517-1523.
https://doi.org/10.1021/acs.chemmater.7b04068
[17]  Ma, R., Bando, Y., Zhang, L. and Sasaki, T. (2004) Layered MnO2 Nanobelts: Hydrothermal Synthesis and Electrochemical Measurements. Advanced Materials, 16, 918-922.
https://doi.org/10.1002/adma.200306592
[18]  Babu, D.D., Huang, Y., Anandhababu, G., et al. (2017) Mixed-Metal-Organic Framework Self-Template Synthesis of Porous Hybrid Oxyphosphides for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 9, 38621-38628.
https://doi.org/10.1021/acsami.7b13359
[19]  Liu, S., Shackery, I., Patil, U.M., et al. (2017) Hierarchical MnCo-Layered Double Hydroxides@Ni(OH)2 Core-Shell Heterostructures as Advanced Electrodes for Supercapacitors. Journal of Materials Chemistry A, 5, 1043-1049.
https://doi.org/10.1039/C6TA07842G
[20]  Nappini, S., Matruglio, A., Naumenko, D., et al. (2017) Graphene Nanobubbles on TiO2 for In-Operando Electron Spectroscopy of Liquid-Phase Chemistry. Nanoscale, 9, 4456-4466.
https://doi.org/10.1039/C6NR09061C

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133