全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

温度对还原氧化石墨烯电化学性能影响的研究
Effect of Temperature on Electrochemical Properties of Reduced Graphene Oxide

DOI: 10.12677/CMP.2021.102005, PP. 33-44

Keywords: 石墨烯,不同温度,水浴法,电化学性能
Graphene
, Different Temperatures, Water Bath Method, Electrochemical Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过改进的Hummers法制备氧化石墨,以水合肼作为还原剂,分别在60℃、80℃、95℃、110℃反应温度下,采用水浴法制备了还原氧化石墨烯(RGO)。通过X射线衍射、扫描电子显微镜、拉曼光谱进行形貌与结构表征,利用电化学工作站对4种还原温度条件下所制备的RGO样品的电化学性能进行测试。此外,在10℃、30℃、50℃、70℃、90℃水浴条件下对所制备的RGO样品的电化学性能进行测试。结果表明:反应温度对RGO表面形貌的影响很大,110℃反应温度下制备RGO的效果最好,还原较为充分,片层较薄,具有一定的多孔结构,呈现良好的电化学性能,比电容达到184.0 F/g。还原氧化石墨烯的比电容随测试温度升高而增大,在90℃时达到207.3 F/g。
Graphite oxide was prepared by an improved Hummers method, and reduced graphene oxide (RGO) was prepared by a water bath method with hydrazine hydrate as a reducing agent at different reaction temperatures of 60?C, 80?C, 95?C, and 110?C. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical performance of the RGO prepared at four different reduction temperatures was tested using an electrochemical workstation. Besides, the electrochemical performance of the as-prepared RGO was tested at 10?C, 30?C, 50?C, 70?C, and 90?C in a water bath. The results show that the reaction temperature has a great influence on the surface morphology of RGO. The RGO prepared at 110?C is the best, which has a relatively sufficient reduction, a thin sheet, a certain porous structure, good electrochemical performance, and the specific capacitance reaches 184.0 F/g. It is interesting to note that the specific capacitance of RGO increases with the rise in test temperature and then reaches 207.3 F/g at 90?C.

References

[1]  Devi, N. and Ray, S.S. (2020) Performance of Bismuth-Based Materials for Supercapacitor Applications: A Review. Mate-rials Today Communications, 25, Article ID: 101691.
https://doi.org/10.1016/j.mtcomm.2020.101691
[2]  Xue, T., Liao, S.J., Yang, Y., et al. (2019) Nickel Induced in Situ Growth of Nickel Hydroxide Nanoflakes on Reduced Graphite Oxide with High Energy and Power Density. Journal of Colloid and Interface Science, 537, 50-56.
https://doi.org/10.1016/j.jcis.2018.11.002
[3]  Lai, L., Li, R., Su, S., et al. (2020) Controllable Synthesis of Re-duced Graphene Oxide/Nickel Hydroxide Composites with Different Morphologies for High Performance Supercapaci-tors. Journal of Alloys and Compounds, 820, Article ID: 153120.
https://doi.org/10.1016/j.jallcom.2019.153120
[4]  Zhang, L.L., Gu, Y. and Zhao, X.S. (2013) Advanced Porous Carbon Electrodes for Electrochemical Capacitors. Journal of Materials Chemistry A, 1, 9395-9408.
https://doi.org/10.1039/c3ta11114h
[5]  皮晓强, 王升高, 刘星星, 等. 氢等离子体与水合肼还原氧化石墨烯电容性能的比较[J]. 真空与低温, 2016, 22(6): 359-364.
[6]  Novoselov, K.S., Fal’Ko, V.I., Colombo, L., et al. (2012) A Roadmap for Graphene. Nature, 490, 192-200.
https://doi.org/10.1038/nature11458
[7]  De Silva, K.K.H., Huang, H.H., Joshi, R.K., et al. (2017) Chemical Re-duction of Graphene Oxide Using Green Reductants. Carbon, 119, 190-199.
https://doi.org/10.1016/j.carbon.2017.04.025
[8]  Ahmed, N.S., Azizi, O., El-Boher, A., et al. (2018) Facile Syn-thesis and Characterization of Reduced Graphene Oxide Produced with Green and Conventional Reductants. ECS Jour-nal of Solid State Science and Technology, 7, M173-M179.
https://doi.org/10.1149/2.0181811jss
[9]  Chakrabarti, A., Lu, J., Skrabutenas, J.C., et al. (2011) Conversion of Carbon Dioxide to Few-Layer Graphene. Journal of Materials Chemistry, 21, 9491-9493.
https://doi.org/10.1039/c1jm11227a
[10]  Dikin, D.A., Stankovich, S., Zimney, E.J., et al. (2007) Preparation and Characterization of Graphene Oxide Paper. Nature, 448, 457-460.
https://doi.org/10.1038/nature06016
[11]  Shang, Y.U., Zhang, D., Liu, Y., et al. (2015) Preliminary Comparison of Different Reduction Methods of Graphene Oxide. Bulletin of Materials Science, 38, 7-12.
https://doi.org/10.1007/s12034-014-0794-7
[12]  Singh, A., Ojha, S.K. and Ojha, A.K. (2020) Facile Synthesis of Porous Nanostructures of NiCo2O4 Grown on rGO Sheet for High Performance Supercapacitors. Synthetic Metals, 259, Article ID: 116215.
https://doi.org/10.1016/j.synthmet.2019.116215
[13]  Shen, K., Huang, Z.H., Gan, L., et al. (2009) Graphitic Po-rous Carbons Prepared by a Modified Template Method. Chemistry Letters, 38, 90-91.
https://doi.org/10.1246/cl.2009.90
[14]  Stobinski, L., Lesiak, B., Malolepszy, A., et al. (2014) Graphene Oxide and Reduced Graphene Oxide Studied by the XRD, TEM and Electron Spectroscopy Methods. Journal of Electron Spec-troscopy and Related Phenomena, 195, 145-154.
https://doi.org/10.1016/j.elspec.2014.07.003
[15]  Wang, K., Xu, M., Gu, Y., et al. (2017) Low-Temperature Plas-ma Exfoliated n-Doped Graphene for Symmetrical Electrode Supercapacitors. Nano Energy, 31, 486-494.
https://doi.org/10.1016/j.nanoen.2016.11.007
[16]  Bian, S., Scott, A.M., Cao, Y., et al. (2013) Covalently Pat-terned Graphene Surfaces by a Force-Accelerated Diels-Alder Reaction. Journal of the American Chemical Society, 135, 9240-9243.
https://doi.org/10.1021/ja4042077
[17]  Gogotsi, Y. and Penner, R.M. (2018) Energy Storage in Na-nomaterials—Capacitive, Pseudocapacitive, or Battery-Like? ACS Nano, 12, 2081-2083.
https://doi.org/10.1021/acsnano.8b01914
[18]  Huang, R., Huang, M., Li, X., et al. (2018) Porous Graphene Films with Unprecedented Elastomeric Scaffold-Like Folding Behavior for Foldable Energy Storage Devices. Advanced Mate-rials, 30, 1-22.
https://doi.org/10.1002/adma.201707025
[19]  Dong, J., Wang, Z. and Kang, X. (2016) The Synthesis of Gra-phene/PVDF Composite Binder and Its Application in High Performance MnO2 Supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489, 282-288.
https://doi.org/10.1016/j.colsurfa.2015.10.060
[20]  Su, S., Lai, L., Wang, R., et al. (2020) One-Step Green and Scalable Dry Synthesis of Nitrogen-Doped Graphene-En- cap-sulated Fe3O4 Nanoparticles as High-Performance Supercapacitor Electrode. Journal of Alloys and Compounds, 834, Ar-ticle ID: 154477.
https://doi.org/10.1016/j.jallcom.2020.154477
[21]  Li, R., Lai, L., Su, S., et al. (2020) One-Step Facile Hydrothermal Synthesis of Heteroatom-Doped Porous Graphene Reduced Comparatively by Different Reductants for High Performance Supercapacitors. Materials Today Communications, 23, Article ID: 101128.
https://doi.org/10.1016/j.mtcomm.2020.101128
[22]  李永刚, 冯攀, 俞小花, 等. 不同还原剂还原的石墨烯电化学性能研究[J]. 化工新型材料, 2019, 47(1): 92-95.
[23]  Li, X., Tang, Y., Song, J., et al. (2018) Self-Supporting Activated Carbon/Carbon Nanotube/Reduced Graphene Oxide Flexible Electrode for High Performance Supercapacitor. Carbon, 129, 236-244.
https://doi.org/10.1016/j.carbon.2017.11.099
[24]  Masarapu, C., Zeng, H.F., Hung, K.H., et al. (2009) Effect of Temperature on the Capacitance of Carbon Nanotube Supercapacitors. ACS Nano, 3, 2199-2206.
https://doi.org/10.1021/nn900500n
[25]  Al Sakka, M., Gualous, H., Van Mierlo, J., et al. (2009) Thermal Model-ing and Heat Management of Supercapacitor Modules for Vehicle Applications. Journal of Power Sources, 194, 581-587.
https://doi.org/10.1016/j.jpowsour.2009.06.038

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133