全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新型相变溶剂捕集二氧化碳相关研究进展
Research Progress of Carbon Dioxide Capture by Novel Biphasic Solvents

DOI: 10.12677/HJCET.2021.113016, PP. 115-119

Keywords: CO2捕集,相变溶剂,吸收,再生能耗
CO2 Capture
, Biphasic Solvent, Absorption, Regeneration Energy Consumption

Full-Text   Cite this paper   Add to My Lib

Abstract:

二氧化碳(CO2)捕集与封存是减缓全球气候变化的重要手段,新型捕集技术的开发对我国实现CO2减排目标具有重要意义。本文明确指出传统化学吸收法存在再生能耗高、经济效益低的弊端。相变溶剂在吸收CO2过程中出现吸收剂–吸收产物分层现象,通过减少解吸溶剂体积的方式进一步降低再生能耗,使得CO2捕集成本大大降低,为低成本捕集CO2提供了新思路。
Carbon dioxide (CO2) capture and storage is an important means to mitigate global climate change. The development of new capture technologies is of great significance for China to achieve the goal of CO2 emission reduction. This paper points out that the traditional chemical absorption methods have the disadvantages of high energy consumption and low economic benefit. In the process of CO2 absorption, the biphasic solvent has the phenomenon of absorbent-absorption product stratification, which further reduces the regeneration energy consumption by reducing the volume of desorption solvent. This provides a new way to capture CO2 at a low cost.

References

[1]  Ma, D., Zhu, C., Fu, T., Yuan, X. and Ma, Y. (2020) An Effective Hybrid Solvent of MEA/DEEA for CO2 Absorption and Its Mass Transfer Performance in Microreactor. Separation and Purification Technology, 242, Article ID: 116795.
https://doi.org/10.1016/j.seppur.2020.116795
[2]  Liang, Z., Rongwong, W., Liu, H., Fu, K., Gao, H., Cao, F., Zhang, R., Sema, T., Henni, A., Sumon, K., Nath, D., Gelowitz, D., Srisang, W., Saiwan, C., Benamor, A., Al-Marri, M., Shi, H., Supap, T., Chan, C., Zhou, Q., Abu-Zahra, M., Wilson, M., Olson, W., Idem, R. and Tontiwachwuthikul, P. (2015) Recent Progress and New Developments in Post-Combustion Carbon-Capture Technology with Amine Based Solvents. International Journal of Greenhouse Gas Control, 40, 26-54.
https://doi.org/10.1016/j.ijggc.2015.06.017
[3]  Rabensteiner, M., Kinger, G., Koller, M. and Hochenauer, C. (2016) Pilot Plant Study of Aqueous Solution of Piperazine Activated 2-Amino-2-methyl-1-propanol for Post Combus-tion Carbon Dioxide Capture. International Journal of Greenhouse Gas Control, 51, 106-117.
https://doi.org/10.1016/j.ijggc.2016.04.035
[4]  Wang, L., An, S., Li, Q., Yu, S. and Wu, S. (2017) Phase Change Behavior and Kinetics of CO2 Absorption into DMBA/DEEA Solution in a Wetted-Wall Column. Chemical Engineering Journal, 314, 681-687.
https://doi.org/10.1016/j.cej.2016.12.033
[5]  Raynal, L., Bouillon, P.-A., Gomez, A. and Broutin, P. (2011) From MEA to Demixing Solvents and Future Steps, a Roadmap for Lowering the Cost of Post-Combustion Carbon Capture. Chemical Engineering Journal, 171, 742-752.
https://doi.org/10.1016/j.cej.2011.01.008
[6]  Chen, Z., Jing, G., Lv, B. and Zhou, Z. (2020) An Efficient Sol-id-Liquid Biphasic Solvent for CO2 Capture: Crystalline Powder Product and Low Heat Duty. ACS Sustainable Chemis-try & Engineering, 8, 14493-14503.
https://doi.org/10.1021/acssuschemeng.0c04616
[7]  Chu, F., Yang, L., Du, X. and Yang, Y. (2017) Mass Trans-fer and Energy Consumption for CO2 Absorption by Ammonia Solution in Bubble Column. Applied Energy, 190, 1068-1080.
https://doi.org/10.1016/j.apenergy.2017.01.027
[8]  Oh, S.-Y., Binns, M., Cho, H. and Kim, J.-K. (2016) Energy Minimization of MEA-Based CO2 Capture Process. Applied Energy, 169, 353-362.
https://doi.org/10.1016/j.apenergy.2016.02.046
[9]  Li, K., Leigh, W., Feron, P., Yu, H. and Tade, M. (2016) Sys-tematic Study of Aqueous Monoethanolamine (MEA)-Based CO2 Capture Process: Techno-Economic Assessment of the MEA Process and Its Improvements. Applied Energy, 165, 648-659.
https://doi.org/10.1016/j.apenergy.2015.12.109
[10]  Kierzkowska-Pawlak, H. and Sobala, K. (2020) Heat of Ab-sorption of CO2 in Aqueous Solutions of DEEA and DEEA?+?MAPA Blends—A New Approach to Measurement Methodology. International Journal of Greenhouse Gas Control, 100, Article ID: 103102.
https://doi.org/10.1016/j.ijggc.2020.103102
[11]  Raynal, L., Alix, P., Bouillon, P.-A., Gomez, A., de Nailly, M.L.F., Jacquin, M., Kittel, J., di Lella, A., Mougin, P. and Trapy, J. (2011) The DMX? Process: An Original Solution for Lowering the Cost of Post-Combustion Carbon Capture. Energy Procedia, 4, 779-786.
https://doi.org/10.1016/j.egypro.2011.01.119
[12]  Zhang, S., Shen, Y., Shao, P., Chen, J. and Wang, L. (2018) Kinetics, Thermodynamics, and Mechanism of a Novel Biphasic Solvent for CO2 Capture from Flue Gas. Environmental Science & Technology, 52, 3660-3668.
https://doi.org/10.1021/acs.est.7b05936
[13]  Wang, L., Liu, S., Wang, R., Li, Q. and Zhang, S. (2019) DMCA-MCA Hybrid with High Absorption Rate and Low Energy Penalty for CO2 Capture. International Conference on Applied Energy, V?ster?s, 12-15 August 2019, 396.
[14]  李伟斌, 董立户, 陈健. 仲胺和叔胺水溶液吸收CO2的动力学[J]. 过程工程学报, 2011, 11(3): 422-428.
[15]  Hartono, A., Hoff, K.A., Mejdell, T. and Svendsen, H.F. (2011) Solubility of Carbon Dioxide in Aqueous 2.5 M of Diethylenetriamine (DETA) Solution. Energy Procedia, 4, 179-186.
https://doi.org/10.1016/j.egypro.2011.01.039
[16]  Kim, Y.E., Moon, S.J., Yoon, Y.I., Jeong, S.K., Park, K.T., Bae, S.T. and Nam, S.C. (2014) Heat of Absorption and Absorption Capacity of CO2 in Aqueous Solutions of Amine Containing Multiple Amino Groups. Separation and Purification Technology, 122, 112-118.
https://doi.org/10.1016/j.seppur.2013.10.030
[17]  You, J.K., Lee, H.Y. and Hong, Y.K. (2017) Effect of 1-Methylimidazole on CO2 Absorption by Diethylenetriamine Aqueous Solutions. Chemical Engineering & Technology, 40, 2238-2242.
https://doi.org/10.1002/ceat.201700150
[18]  Wang, R., Liu, S., Wang, L., Li, Q., Zhang, S., Chen, B., Jiang, L. and Zhang, Y. (2019) Superior Energy-Saving Splitter in Monoethanolamine-Based Biphasic Solvents for CO2 Capture from Coal-Fired Flue Gas. Applied Energy, 242, 302-310.
https://doi.org/10.1016/j.apenergy.2019.03.138

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133