|
磷酸化多肽的富集原理及相关富集方法的研究进展
|
Abstract:
磷酸化是生物体内广泛存在的一类蛋白质翻译后修饰,其参与了绝大多数生命活动的调控。鉴于磷酸化修饰有着重要的生物学意义,相关研究一直是不少科研工作者们关注的焦点。然而,因磷酸化蛋白具有分布广泛、相对丰度低、持续动态变化等特征,导致其分析过程存在复杂性高、效率低、难度大等问题。开发高效且稳定的样品前处理方法是实现高通量磷酸化修饰分析的关键因素之一。除基于金属氧化物亲和色谱法、固定化金属亲和色谱法的经典富集材料之外,近十年来,一些通过离子交换、氢键、配体交换、疏水作用等方式分离磷酸化多肽的新型材料也逐渐得到应用。本文简述了这些新兴富集方法的原理及研究进展。
Phosphorylation is a type of protein post-translational modification widely existing in organisms, and it is involved in the regulation of most life activities. In view of its important biological significance, the relevant research has been the focus of many scientific researchers. However, due to the characteristics of wide distribution, low relative abundance and continuous dynamic changes of phosphorylated proteins, the analysis process is extremely complicated, inefficient and difficult. It is one of the key factors to achieve high-throughput phosphorylation analysis via developing efficient and stable sample preparation methods. In the past decade, in addition to the classic enrichment materials based on metal oxide affinity chromatography and immobilized metal affinity chromatography, several novel ones based on ion exchange, hydrogen bonding, ligand exchange, and/ or hydrophobic interaction have been used to separate phosphopeptides. This review briefly describes the enrichment principles as well as the research progress of these emerging methods.
[1] | Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Friedberg, I., Osterman, A., et al. (2004) Protein Tyrosine Phosphatases in the Human Genome. Cell, 117, 699-711. https://doi.org/10.1016/j.cell.2004.05.018 |
[2] | Cohen, P. (2002) The Origins of Protein Phosphorylation. Nature Cell Biology, 4, E127-E130.
https://doi.org/10.1038/ncb0502-e127 |
[3] | 姜铮, 王芳, 何湘, 刘大伟, 陈宣男, 赵红庆, 等. 蛋白质磷酸化修饰的研究进展[J]. 生物技术通讯, 2009, 20(2): 233-237. |
[4] | 隋少卉, 王京兰, 蔡耘, 钱小红. 磷酸化蛋白质组学分析和定量技术的研究进展[J]. 生物化学与生物物理进展, 2007, 34(3): 240-245. |
[5] | Hardman, G., Perkins, S., Brownridge, P.J., Clarke, C.J., Byrne, D.P., Campbell, A.E., et al. (2019) Strong Anion Exchange-Mediated Phosphoproteomics Reveals Extensive Human Non-Canonical Phosphorylation. The EMBO Journal, 38, e100847. https://doi.org/10.15252/embj.2018100847 |
[6] | 胡晔晨, 江波, 张丽华, 张玉奎. N-磷酸化修饰蛋白质的富集和鉴定方法[J]. 色谱, 2020, 38(3): 278-286. |
[7] | Besant, P.G. and Attwood, P.V. (2012) Histone H4 Histidine Phosphorylation: Kinases, Phosphatases, Liver Regeneration and Cancer. Biochemical Society Transactions, 40, 290-293. https://doi.org/10.1042/BST20110605 |
[8] | Fr?czyk, T., Ruman, T., Wilk, P., Palmowski, P., Rogowska-Wrzesinska, A., Cie?la, J., et al. (2015) Properties of Phosphorylated Thymidylate Synthase. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1854, 1922-1934.
https://doi.org/10.1016/j.bbapap.2015.08.007 |
[9] | 梁雪芳, 赵吉, 查金苗, 王子健. 磷酸化蛋白质组学技术的发展及其在环境毒理研究中的应用[J]. 环境科学学报, 2016, 36(2): 398-412. |
[10] | 赵群, 张丽华, 张玉奎. 蛋白质组学技术前沿进展[J]. 应用化学, 2018, 35(9): 977-983. |
[11] | Puttick, J., Baker, E.N. and Delbaere, L.T. (2008) Histidine Phosphorylation in Biological Systems. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1784, 100-105. https://doi.org/10.1016/j.bbapap.2007.07.008 |
[12] | Jung, H., Choi, Y., Lee, D., Seo, J.K. and Kee, J.-M. (2019) Distinct Phosphorylation and Dephosphorylation Dynamics of Protein Arginine Kinases Revealed by Fluorescent Activity Probes. Chemical Communications, 55, 7482-7485.
https://doi.org/10.1039/C9CC03285A |
[13] | 梁前进, 王鹏程, 白燕荣. 蛋白质磷酸化修饰研究进展[J]. 科技导报, 2012, 30(31): 73-79. |
[14] | 邱碧霞, 许亚丽, 翟颖红, 周蓓, 苏宇杰. 金属氧化物富集磷酸肽的研究进展[J]. 现代食品, 2016, 3(5): 9-10. |
[15] | 侯恒磊, 池伟亚, 安宁, 公丕胜, 靳海波, 齐莉, 等. 固定化金属亲和层析介质在蛋白纯化中的应用进展[J]. 当代化工研究, 2020(3): 1-4. |
[16] | 熊芳芳, 江丹丹, 贾琼. 功能化磁性纳米材料在磷酸化肽富集中的应用[J]. 色谱, 2020, 38(1): 60-65. |
[17] | Atakay, M., Celikbi?ak, O. and Salih, B. (2012) Amine-Functionalized Sol-Gel-Based Lab-in-a-Pipet-Tip Approach for the Fast Enrichment and Specific Purification of Phosphopeptides in MALDI-MS Applications. Analytical Chemistry, 84, 2713-2720. https://doi.org/10.1021/ac203008u |
[18] | Chen, J., Shinde, S., Subedi, P., Wierzbicka, C., Sellergren, B., Helling, S., et al. (2016) Validation of Molecularly Imprinted Polymers for Side Chain Selective Phosphopeptide Enrichment. Journal of Chromatography A, 1471, 45-50.
https://doi.org/10.1016/j.chroma.2016.10.018 |
[19] | Lu, Q., Chen, C., Xiong, Y., Li, G., Zhang, X., Zhang, Y., et al. (2020) High-Efficiency Phosphopeptide and Glycopeptide Simultaneous Enrichment by Hydrogen Bond-based Bifunctional Smart Polymer. Analytical Chemistry, 92, 6269-6277.
https://doi.org/10.1021/acs.analchem.9b02643 |
[20] | Chen, C.T., Wang, L.Y. and Ho, Y.P. (2011) Use of Polyethylenimine-Modified Magnetic Nanoparticles for Highly Specific Enrichment of Phosphopeptides for Mass Spectrometric Analysis. Analytical and Bioanalytical Chemistry, 399, 2795-2806. https://doi.org/10.1007/s00216-010-4623-6 |
[21] | Zhu, G.T., He, X.M., He, S., Chen, X., Zhu, S.-K. and Feng, Y.-Q. (2016) Synthesis of Polyethylenimine Functionalized Mesoporous Silica for In-Pipet-Tip Phosphopeptide Enrichment. ACS Applied Materials & Interfaces, 8, 32182- 32188. https://doi.org/10.1021/acsami.6b10948 |
[22] | Zhu, G.T., He, X.M., Chen, X., Hussain, D., Ding, J. and Feng, Y.-Q. (2016) Magnetic Graphitic Carbon Nitride Anion Exchanger for Specific Enrichment of Phosphopeptides. Journal of Chromatography A, 1437, 137-144.
https://doi.org/10.1016/j.chroma.2016.01.080 |
[23] | Xu, L.N., Li, L.P., Jin, L., Bai, Y. and Liu, H.-W. (2014) Guanidyl-Functionalized Graphene as a Bifunctional Adsorbent for Selective Enrichment of Phosphopeptides. Chemical Communications, 50, 10963-10966.
https://doi.org/10.1039/C4CC04327H |
[24] | Deng, Q., Wu, J., Chen, Y., Zhang, Z., Wang, Y., Fang, G., et al. (2014) Guanidinium Functionalized Superparamagnetic Silica Spheres for Selective Enrichment of Phosphopeptides and Intact Phosphopeptides from Complex Mixtures. Journal of Materials Chemistry B, 2, 1048-1058. https://doi.org/10.1039/C3TB21540G |
[25] | Luo, B., Yu, L., He, J., Li, Z.Y., Lan, F. and Wu, Y. (2020) Design of Guanidyl-Functionalized Magnetic Covalent Organic Framework for Highly Selective Capture of Endogenous Phosphopeptides. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 1145, Article ID: 122080.
https://doi.org/10.1016/j.jchromb.2020.122080 |
[26] | Chang, C.K., Wu, C.C., Wang, Y.S. and Chang, H.-C. (2008) Selective Extraction and Enrichment of Multiphosphorylated Peptides Using Polyarginine-Coated Diamond Nanoparticles. Analytical Chemistry, 80, 3791-3797.
https://doi.org/10.1021/ac702618h |
[27] | Yu, L., Luo, B., Li, Z., He, J., Lan, F. and Wu, Y. (2020) PAMAM-PMAA Brush-Functionalized Magnetic Composite Nanospheres: A Smart Nanoprobe with Tunable Selectivity for Effective Enrichment of Mono-, Multi-, or Global Phosphopeptides. Journal of Materials Chemistry B, 8, 1266-1276. https://doi.org/10.1039/C9TB02577D |
[28] | Luo, B., Zhou, X., Jiang, P., Yi, Q., Lan, F. and Wu, Y. (2018) PAMA-Arg Brush-Functionalized Magnetic Composite Nanospheres for Highly Effective Enrichment of Phosphorylated Biomolecules. Journal of Materials Chemistry B, 6, 3969-3978. https://doi.org/10.1039/C8TB00705E |
[29] | Dai, L., Jin, S., Fan, M. and Zhou, P. (2017) Preparation of Quaternized Cellulose/Chitosan Microspheres for Selective Enrichment of Phosphopeptides. Analytical and Bioanalytical Chemistry, 409, 3309-3317.
https://doi.org/10.1007/s00216-017-0273-2 |
[30] | Dai, L., Sun, Z. and Zhou, P. (2019) Modification of Luffa Sponge for Enrichment of Phosphopeptides. International Journal of Molecular Sciences, 21, Article No. 101. https://doi.org/10.3390/ijms21010101 |
[31] | Lu, J., Li, Y. and Deng, C. (2011) Facile Synthesis of Zirconium Phosphonate-Functionalized Magnetic Mesoporous Silica Microspheres Designed for Highly Selective Enrichment of Phosphopeptides. Nanoscale, 3, 1225-1233.
https://doi.org/10.1039/c0nr00896f |
[32] | Peng, J., Niu, H., Zhang, H., Yao, Y., Zhao, X., Zhou, X., et al. (2018) Highly Specific Enrichment of Multi-Phos- phopeptides by the Diphosphorylated Fructose-Modified Dual-Metal-Centered Zirconium-Organic Framework. ACS Applied Materials & Interfaces, 10, 32613-32621. https://doi.org/10.1021/acsami.8b11138 |
[33] | Jiang, D., Li, Z. and Jia, Q. (2019) A Sensitive and Selective Phosphopeptide Enrichment Strategy by Combining Polyoxometalates and Cysteamine Hydrochloride-Modified chitosan through Layer-by-Layer Assembly. Analytica Chimica Acta, 1066, 58-68. https://doi.org/10.1016/j.aca.2019.04.001 |
[34] | Xiao, J., Yang, S.S., Wu, J.X., Wang, H., Yu, X., Shang, W., et al. (2019) Highly Selective Capture of Monophosphopeptides by Two-Dimensional Metal-Organic Framework Nanosheets. Analytical Chemistry, 91, 9093-9101.
https://doi.org/10.1021/acs.analchem.9b01581 |
[35] | Zheng, H. and Jia, Q. (2019) A Polymer Monolith Composed of a Perovskite and Cucurbit Uril Hybrid for Highly Selective Enrichment of Phosphopeptides Prior to Mass Spectrometric Analysis. Microchimica Acta, 187, Article No. 68.
https://doi.org/10.1007/s00604-019-4054-9 |
[36] | Xie, Y. and Deng, C. (2017) Designed Synthesis of a “One for Two” Hydrophilic Magnetic Amino-Functionalized Metal-Organic Framework for Highly Efficient Enrichment of Glycopeptides and Phosphopeptides. Scientific Reports, 7, Article No. 1162. https://doi.org/10.1038/s41598-017-01341-y |
[37] | 韩彬. 固定化金属离子亲和色谱研究进展[J]. 科技导报, 2017, 35(22): 92-100. |
[38] | Zhou, H., Xu, S., Ye, M., Feng, S., Pan, C., Jiang, X., et al. (2006) Zirconium Phosphonate-Modified Porous Silicon for Highly Specific Capture of Phosphopeptides and MALDI-TOF MS Analysis. Journal of Proteome Research, 5, 2431-2437. https://doi.org/10.1021/pr060162f |
[39] | Xiong, Z., Zhang, L., Fang, C., Zhang, Q., Ji, Y., Zhang, Z., et al. (2014) Ti4+-Immobilized Multilayer Polysaccharide Coated Magnetic Nanoparticles for Highly Selective Enrichment of Phosphopeptides. Journal of Materials Chemistry B, 2, 4473-4480. https://doi.org/10.1039/C4TB00479E |
[40] | Wei, J., Zhang, Y., Wang, J., Tan, F., Liu, J., Cai, Y., et al. (2008) Highly Efficient Enrichment of Phosphopeptides by Magnetic Nanoparticles Coated with Zirconium Phosphonate for Phosphoproteome Analysis. Rapid Communications in Mass Spectrometry, 22, 1069-1080. https://doi.org/10.1002/rcm.3485 |
[41] | Qing, G., Lu, Q., Li, X., Liu, J., Ye, M., Liang, X., et al. (2017) Hydrogen Bond Based Smart Polymer for Highly Selective and Tunable Capture of Multiply Phosphorylated Peptides. Nature Communications, 8, Article No. 461.
https://doi.org/10.1038/s41467-017-00464-0 |
[42] | Machida, K., Mayer, B.J. and Nollau, P. (2003) Profiling the Global Tyrosine Phosphorylation State. Molecular & Cellular Proteomics, 2, 215-233. https://doi.org/10.1074/mcp.R300002-MCP200 |
[43] | Ruiu, L., Roque, A.C., Taipa, M.A. and Lowe, C. (2006) De Novo Design, Synthesis and Screening of a Combinatorial Library of Complementary Ligands Directed towards the Surface of Cutinase from Fusarium solani pisi. Journal of Molecular Recognition, 19, 372-378. https://doi.org/10.1002/jmr.782 |
[44] | Roque, A.C., Taipa, M.A. and Lowe, C.R. (2005) Synthesis and Screening of a Rationally Designed Combinatorial Library of Affinity Ligands Mimicking Protein L from Peptostreptococcus magnus. Journal of Molecular Recognition, 18, 213-224. https://doi.org/10.1002/jmr.733 |
[45] | Roque, A.C., Taipa, M.A. and Lowe, C.R. (2005) An Artificial Protein L for the Purification of Immunoglobulins and Fab Fragments by Affinity Chromatography. Journal of Chromatography A, 1064, 157-167.
https://doi.org/10.1016/j.chroma.2004.11.102 |
[46] | Roque, A.C. and Lowe, C.R. (2006) Advances and Applications of De Novo Designed Affinity Ligands in Proteomics. Biotechnology Advances, 24, 17-26. https://doi.org/10.1016/j.biotechadv.2005.05.001 |
[47] | Batalha, I.L., Zhou, H., Lilley, K., Lowe, C.R. and Roque, A.C.A. (2016) Mimicking Nature: Phosphopeptide Enrichment Using Combinatorial Libraries of Affinity Ligands. Journal of Chromatography A, 1457, 76-87.
https://doi.org/10.1016/j.chroma.2016.06.032 |
[48] | Saeed, A. and Iqbal, M. (2013) Loofa (Luffa cylindrica) Sponge: Review of Development of the Biomatrix as a Tool for Biotechnological Applications. Biotechnology Progress, 29, 573-600. https://doi.org/10.1002/btpr.1702 |
[49] | Mirza, M.R., Rainer, M., Duran, S., Moin, S.T., Choudhary, M.I. and Bonn, G.K. (2019) Highly Selective Enrichment of Phosphopeptides Using Poly(dibenzo-18-crown-6) as a Solid-Phase Extraction material. Biomedical Chromatography, 33, e4567. https://doi.org/10.1002/bmc.4567 |
[50] | Li, X.-S., Chen, X., Yuan, B.F. and Feng, Y.-Q. (2015) Perovskite-Modified Metal Oxides for the Highly Selective Enrichment of Phosphopeptides. RSC Advances, 5, 7832-7841. https://doi.org/10.1039/C4RA13878C |
[51] | Li, X.S., Chen, X., Sun, H., Yuan, B.-F. and Feng, Y.-Q. (2015) Perovskite for the Highly Selective Enrichment of Phosphopeptides. Journal of Chromatography A, 1376, 143-148. https://doi.org/10.1016/j.chroma.2014.12.036 |
[52] | Rekharsky, M.V., Yamamura, H., Ko, Y.H., Selvapalam, N., Kim, K. and Inoue, Y. (2008) Sequence Recognition and Self-Sorting of a Dipeptide by Cucurbit[6]Uril and Cucurbit[7]Uril. Chemical Communications, 19, 2236-2238.
https://doi.org/10.1039/b719902c |