全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

C-xFe2O3对粉末冶金Fe-18Mn-3Cu-C高锰无磁钢微观组织和力学性能的影响
Effect of C-xFe2O3 on Microstructure and Mechanical Properties of Powder Metallurgy Fe-18Mn-3Cu-C High Manganese Non-Magnetic Steel

DOI: 10.12677/MS.2021.114045, PP. 375-384

Keywords: 高锰无磁钢,Fe-18Mn-3Cu-C,C-xFe2O3,粉末冶金
High Manganese Non-Magnetic Steel
, Fe-18Mn-3Cu-C, C-xFe2O3, Powder Metallurgy

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究C-xFe2O3对粉末冶金高锰无磁钢微观组织和力学性能的影响,将高锰预合金粉、电解Cu粉与一定量的C-Fe2O3混合,随后在烧结气氛为分解氨(N2:H2 = 1:3)的网带炉中进行梯度工艺烧结,最终制得Fe-18Mn-3Cu-C块体合金。后对烧结体进行显微组织表征和力学性能测试。结果表明:烧结合金的组织均由奥氏体基体,铜相,富锰相组成,随着Fe2O3含量的增加(0~0.8 wt%),高锰无磁钢的致密度、抗拉强度和总伸长率均呈现先升高后降低的趋势,在Fe2O3的质量分数为0.4%时,其致密度达到了最高值92.67%,对应的抗拉强度与总伸长率分别为581 MPa和8.1%,经计算可知,0.4wt% Fe2O3的加入将高锰无磁钢的抗拉强度和总伸长率分别提高了9.4%和66.7%,强韧化效果显著。这说明在烧结过程中Fe2O3粉与游离态石墨C和分解氨中的H2发生了还原反应,通过活化作用加速了合金粉末的烧结过程,并且促进了Mn元素的均匀化,同时促进了孔隙的闭合,提高了合金的致密度。
In order to study the effect of C-xFe2O3 on the microstructure and mechanical properties of powder metallurgy high manganese non-magnetic steel, the high manganese pre-alloyed powder, electrolytic copper powder and a certain amount of C-Fe2O3 were mixed, and then gradient process sintering was carried out in a mesh furnace with sintering atmosphere of decomposition ammonia (N2:H2 = 1:3). Finally, Fe-18Mn-3Cu-C bulk alloy was prepared. The microstructure and mechanical properties of the sintered body were characterized. The results show that the microstructure of the sintered alloy is composed of austenite matrix, copper phase and manganese-rich phase. With the increase of Fe2O3 content (0~0.8 wt%), the density, tensile strength and total elongation of the high manganese non-magnetic steel increase first and then decrease. When the mass fraction of Fe2O3 is 0.4%, the density reaches the highest value of 92.67%, the tensile strength and total elongation are 581 MPa and 8.1 %, respectively. The calculation shows that the tensile strength and total elongation of the high manganese non-magnetic steel increase by 9.4% and 66.7%, respectively, with the addition of 0.4wt % Fe2O3, and the strengthening and toughening effect is remarkable. This shows that during the sintering process, Fe2O3 powder has a reduction reaction with free graphite C and H2 in ammonia decomposition. The sintering process of alloy powder is accelerated by activation, and the homogenization of Mn is promoted. At the same time, the closure of pores is promoted, and the density of the alloy is improved.

References

[1]  Falodun, O.E., Oke, S.R., Okoro, A.M., et al. (2020) Characterization of Cast Manganese Steels Containing Varying Manganese and Chromium Additions. Materials Today: Proceedings, 28, 730-733.
https://doi.org/10.1016/j.matpr.2019.12.288
[2]  李长生, 马彪, 宋艳磊, 等. 无磁钢的研究概况和我国无磁钢的发展思路[J]. 河南冶金, 2014, 22(1): 1-7, 12.
[3]  Ma, Z., Gao, M., Na, D., et al. (219) Study on a Biodegradable Antibacterial Fe-Mn-C-Cu Alloy as Urinary Implant Material. Materials Science and Engineering: C, 103, Article ID: 109718.
https://doi.org/10.1016/j.msec.2019.05.003
[4]  朱权利, 刘艳肖, 陈家坚. 粉末冶金高锰无磁钢Fe-25Mn-xCu-C的组织与性能研究[J]. 粉末冶金工业, 2019, 29(1): 28-31.
[5]  汤波. 高锰无磁钢的残余磁性分析[J]. 粉末冶金工业, 2017, 27(3): 72-75.
[6]  王靖鹏, 顾煜臻, 刘文生. 探究粉末冶金的发展及现状[J]. 世界有色金属. 2017(13): 8-10.
[7]  Idris, J. and Kabir, M.A. (2001) Powder Metallurgy Development for the Production of Metal Matrix Composite. Processing and Fabrication of Advanced Materials, Vol. 8, Singapore, 8-10 September 1999, 921-931.
https://doi.org/10.1142/9789812811431_0108
[8]  Ei Mann, N., Kl Den, B., Wei, G., Rber, T., et al. (2017) High-Entropy Alloy CoCrFeMnNi Produced by Powder Metallurgy. Powder Metallurgy, 60, 1-14.
[9]  戴起勋. 金属材料学[M]. 北京: 化学工业出版社, 2011.
[10]  Tasker, J. (1982) Austenitic Manganese Steel-Fact and Fallacy. In-termountain Minerals Symposium, Vail, 3-6 August 1982, 3-19.
[11]  Sainz, S., Martinez, V., Dougan, M., et al. (2006) Sinterability, Hardenability and Mechanical Properties of Mn-Containing PM Steels through the Use of a Specially De-signed Fe-Mn-C Master Alloy. Advances in Powder Metallurgy & Particulate Materials, 7, 95-108.
[12]  Cui, S. and Jung, I. (2017) Thermodynamic Modeling of the Cu-Fe-Cr and Cu-Fe-Mn Systems. Calphad, 56, 241-259.
https://doi.org/10.1016/j.calphad.2017.01.004
[13]  黄培云. 粉末冶金原理[M]. 北京: 冶金工业出版社, 1997: 18-19.
[14]  李佑福. 粉末冶金Fe-2Ni-1Cu-0.6C合金烧结助剂的研究[D]: [硕士学位论文]. 长沙: 中南大学, 2014.
[15]  Jia, S., Xiao, Z., Wang, J., et al. (2016) Microstructure and Mechanical Properties of Nonmagnetic Fe-25Mn-xCu-C Steels by Super Solidus Liquid Phase Sintering. Materials Research Express, 3, Article ID: 116502.
https://doi.org/10.1088/2053-1591/3/11/116502

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133