全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Co2+掺杂Zn0.5Cd0.5S固溶体的制备及其光催化CO2还原性能研究
Synthesis and Photocatalytic CO2 Reduction Performance of Co2+ Doped Zn0.5Cd0.5S Solid Solution

DOI: 10.12677/MS.2021.114043, PP. 360-366

Keywords: 光催化剂,CO2还原反应,Co2+掺杂,Zn0.5Cd0.5S固溶体,可见光
Photocatalyst
, CO2 Reduction Reaction, Co2+ Doping, Zn0.5Cd0.5S Solid Solution, Visible Light

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过水热法制备了Zn0.5Cd0.5S固溶体和掺杂Co2+分别为0.5%、1%和2% (摩尔百分比)的Zn0.5Cd0.5S/Co掺杂型光催化剂。采用了X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外–可见光分光光度计(UV-vis)和光致发光(PL)对材料进行了表征,并测试了可见光下光催化CO2还原活性。结果表明:Co2+掺杂后的催化剂结构与形貌没有发生显著变化,但是能带结构发生了明显调整;其中Zn0.5Cd0.5S/Co-1%催化剂在K2SO3/KHCO3液相体系,可见光辐射(λ > 420 nm)下CO2还原活性明显优于初始Zn0.5Cd0.5S材料。为高效光催化剂的构建提供了一种简易的方法。
Zn0.5Cd0.5S solid solution and Co2+ doped Zn0.5Cd0.5S photocatalysts were successfully synthesized by hydrothermal method. The concentrations of Co2+ are 0.5 mol%, 1 mol% and 2 mol%, respectively. X-ray diffraction (XRD), scanning electron microscope (SEM), ultraviolet-visible spectrophotometer (UV-vis) and photoluminescence (PL) were used to characterize, and the photocatalytic CO2 reduction performance was measured under visible light. The results showed that the structure and morphology of Zn0.5Cd0.5S/Co did not change significantly, but the energy band structure was remarkably adjusted. Under the K2SO3/KHCO3 liquid system and visible light radiation (λ > 420 nm), the Zn0.5Cd0.5S/Co-1 sample presented better CO2 reduction performance than the pristine Zn0.5Cd0.5S. It provides a simple method for the construction of high-efficiency photocatalytic systems.

References

[1]  Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
https://doi.org/10.1038/238037a0
[2]  Cortright, R.D., Davda, R.R. and Dumesic, J.A. (2002) Hydrogen from Catalytic Reforming of Biomass-Derived Hydrocarbons in Liquid Water. Nature, 418, 964-967.
https://doi.org/10.1038/nature01009
[3]  Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M. and Ye, J. (2012) Nano-Photocatalytic Materials: Possibilities and Challenges. Advanced Materials, 24, 229-251.
https://doi.org/10.1002/adma.201102752
[4]  Fujiwara, H., Hosokawa, H., Murakoshi, K., Wada, Y. and Yanag-ida, S. (1998) Surface Characteristics of ZnS Nanocrystallites Relating to Their Photocatalysis for CO2 Reduction. Langmuir, 21, 5154-5159.
https://doi.org/10.1021/la9801561
[5]  Kondratenko, E.V., Mul, G., Baltrusaitis, J., Larrazabal, O.G. and Pe-rez-Ramirez, J. (2013) CO2 Photo-Reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts. Energy Environment Science, 6, 3112-3135.
https://doi.org/10.1039/c3ee41272e
[6]  Pang, H., Masuda, T. and Ye, J. (2018) Semiconductor-Based Photoe-lectrochemical Conversion of Carbon Dioxide: Stepping towards Artificial Photosynthesis. Chemistry Asian Journal, 13, 127-142.
https://doi.org/10.1002/asia.201701596
[7]  Chang, X., Wang, T. and Gong, J. (2016) CO2 Photo-Reduction: In-sights into CO2 Activation and Reaction on Surfaces of Photocatalysts. Energy Environment Science, 9, 2177-2196.
https://doi.org/10.1039/C6EE00383D
[8]  Qin, J., Wang, S. and Wang, X. (2017) Visible-Light Reduction CO2 with Dodecahedral Zeolitic Imidazolate Framework ZIF-67 as an Efficient Co-Catalyst. Applied Catalysis B: Environment, 209, 476-482.
https://doi.org/10.1016/j.apcatb.2017.03.018
[9]  Su, Y., Zhang, Z., Liu, H., Wang, Y. (2017) Cd0.2Zn0.8S@UiO-66-NH2 Nanocomposites as Efficient and Stable Visible-Light-Driven Photocatalyst for H2 Evolution and CO2 Reduction. Applied Catalysis B: Environment, 200, 448-457.
https://doi.org/10.1016/j.apcatb.2016.07.032
[10]  Xie, S., Zhang, Q., Liu, G. and Wang, Y. (2016) Photocatalytic and Photoelectrocatalytic Reduction of CO2 Using Heterogeneous Catalysts with Controlled Nanostructures. Chemistry Communication, 52, 35-59.
https://doi.org/10.1039/C5CC07613G
[11]  Ji, Y. and Luo, Y. (2016) New Mechanism for Photocatalytic Reduc-tion of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy. Journal of the American Chemical Society, 138, 15896-15902.
https://doi.org/10.1021/jacs.6b05695
[12]  Gao, S., Gu, B., Jiao, X., Sun, Y., Zu, X., Yang, F., Zhu, W., Wang, C., Feng, Z., Ye, B. and Xie, Y. (2017) Highly Efficient and Exceptionally Durable CO2 Photoreduction to Methanol over Freestanding Defective Single-Unit-Cell Bismuth Vanadate Layers. Journal of the American Chemistry Society, 139, 3438-3445.
https://doi.org/10.1021/jacs.6b11263
[13]  黄亚辉. CdS复合半导体光催化剂的制备及其光解水制氢性能研究[D]: [硕士学位论文]. 南昌: 南昌大学化学系, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133