全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

宇宙线μ子成像技术研究进展
Research Progress of Cosmic Ray Muon Muography Technology

DOI: 10.12677/AG.2021.114046, PP. 505-513

Keywords: 宇宙线μ子,透射成像,散射成像
Cosmic Ray Muons
, Absorption-Based Muography, Scattering-Based Muography

Full-Text   Cite this paper   Add to My Lib

Abstract:

宇宙线μ子成像技术(Muography)是一种新型无损成像方法,它利用μ子穿过不同物质时的透射或散射特性差异来反映目标对象内部结构等信息。该技术分为透射成像(absorption-based muography, AM)和散射成像(scattering-based muography, SM)。早在20世纪30年代,物理学家Carl D. Anderson利用威尔逊云雾室发现了μ子,然而宇宙线μ子成像技术在近二十年才得到快速发展。本文详细介绍了宇宙线μ子成像原理、探测器类型以及应用情况等。
Muography is a novel nondestructive imaging technology, which based on the absorption or scattering of atmospheric muons to reflect the internal structure of the targets. The technology can be divided into absorption-based muography (AM) and scattering-based muography (SM). Muons were discovered by physicist Carl D. Anderson in the Wilson Cloud Room in the 1930s, however, muography has been rapidly developed in the last two decades. In this paper, the principle of muography, the types of detectors and its applications are introduced.

References

[1]  Bonechi, L., D’Alessandro, R. and Giammanco, A. (2020) Atmospheric Muons as an Imaging Tool. Reviews in Physics, 5, Article ID: 100038.
https://doi.org/10.1016/j.revip.2020.100038
[2]  Nagamine, K., Iwasaki, M., Shimomura, K., et al. (1995) Method of Probing Inner-Structure of Geophysical Substance with the Horizontal Cosmic-Ray Muons and Possible Application to Volcanic Eruption Prediction. Nuclear Instruments & Methods in Physics Research, 356, 585-595.
https://doi.org/10.1016/0168-9002(94)01169-9
[3]  Tanaka, H., Nakano, T., Takahashi, S., Yoshida, J., Ohshima, H., Maekawa, T., Watanabe, H. and Niwa, K. (2007). Imaging the Conduit Size of the Dome with Cosmic-Ray Muons: The Structure beneath Showa-Shinzan Lava Dome, Japan. Geophysical Research Letters, 34, L22311.
https://doi.org/10.1029/2007GL031389
[4]  Tanaka, H.K.M., Uchida, T., Tanaka, M., et al. (2009) Detecting a Mass Change inside a Volcano by Cosmic-Ray Muon Radiography (Muography): First Results from Measurements at Asama Volcano, Japan. Geophysical Research Letters, 36, L17302.
https://doi.org/10.1029/2009GL039448
[5]  Oláh, L., et al. (2018) High-Definition and Low-Noise Muography of the Sakurajima Volcano with Gaseous Tracking Detectors. Scientific Reports, 8, Article No. 3207.
https://doi.org/10.1038/s41598-018-21423-9
[6]  Ambrosino, F., et al. (2015) Joint Measurement of the Atmospheric Muon Flux through the Puy de Dome Volcano with Plastic Scintillators and Resistive Plate Chambers Detectors. Journal of Geophysical Research, 120, 7290.
https://doi.org/10.1002/2015JB011969
[7]  Marteau, J., et al. (2017) DIAPHANE: Muon Tomography Applied to Volcanoes, Civil Engineering, Archaeology. Journal of Instrumentation, 12, C02008.
https://doi.org/10.1088/1748-0221/12/02/C02008
[8]  Guerrero, I.D., Cabrera, D.F., Paz, J.C., et al. (2019) Design and Construction of a Muon Detector Prototype for Study the Galeras Volcano Internal Structure. Journal of Physics: Conference Series, 1247, Article ID: 012020.
https://doi.org/10.1088/1742-6596/1247/1/012020
[9]  Malmqvist, L., J?nsson, G., Kristiansson, K. and Jacobsson, L. (1979) Theoretical Studies of In-Situ Rock Density Determination Using Cosmic-Ray Muon Intensity Measurements with Application in Mining Geophysics. Geophysics, 44, 1549-1569.
https://doi.org/10.1190/1.1441026
[10]  Nishiyama, R., et al. (2017) First Measurement of Ice-Bedrock Interface of Alpine Glaciers by Cosmic Muon Radiography. Geophysical Research Letters, 44, 6244-6251.
https://doi.org/10.1002/2017GL073599
[11]  Nishiyama, R., et al. (2019) Bedrock Sculpting under an Active Alpine Glacier Revealed from Cosmic-Ray Muon Radiography. Scientific Reports, 9, Article No. 6970.
https://doi.org/10.1038/s41598-019-43527-6
[12]  Alvarez, L.W., et al. (1970) Search for Hidden Chambers in the Pyramids. Science, 167, 832-839.
https://doi.org/10.1126/science.167.3919.832
[13]  Menchaca-Rocha, A. (2014) Using Cosmic Muons to Search for Cavities in the Pyramid of the Sun, Teotihuacan: Preliminary Results. Proceedings, 10th Latin American Symposium on Nuclear Physics and Applications, Montevideo, 1-6 December 2013, Volume XLASNPA, 12.
https://doi.org/10.22323/1.194.0012
[14]  Morishima, K., et al. (2017) Discovery of a Big Void in Khufu’s Pyramid by Observation of Cosmic-Ray Muons. Nature, 552, 386.
https://doi.org/10.1038/nature24647
[15]  Tanaka, H., et al. (2011) Cosmic Muon Imaging of Hidden Seismic Fault Zones: Rainwater Permeation into the Mechanical Fractured Zones in Itoigawa-Shizuoka Tectonic Line, Japan. Earth and Planetary Science Letters, 306, 156.
https://doi.org/10.1016/j.epsl.2011.03.036
[16]  Hivert, F., et al. (2017) Muography Sensitivity to Hydrogeological Rock Density Perturbation: Roles of the Absorption and Scattering on the Muon Flux Measurement Reliability. Near Surface Geophysics, 15, 121.
https://doi.org/10.3997/1873-0604.2016053
[17]  Kudryavtsev, V.A., et al. (2012) Monitoring Subsurface CO2 Em-placement and Security of Storage Using Muon Tomography. International Journal of Greenhouse Gas Control, 11, 21-24.
https://doi.org/10.1016/j.ijggc.2012.07.023
[18]  Klinger, J., et al. (2015) Simulation of Muon Radiography for Monitoring CO2 Stored in a Geological Reservoir. International Journal of Greenhouse Gas Control, 42, 644.
https://doi.org/10.1016/j.ijggc.2015.09.010
[19]  Gluyas, J., et al. (2018) Passive, Continuous Monitoring of Carbon Dioxide Geostorage Using Muon Tomography. Philosophical Transactions of the Royal Society A, 377, Article ID: 20180059.
https://doi.org/10.1098/rsta.2018.0059
[20]  Borozdin, K.N., Hogan, G.E., Morris, C., et al. (2003) Radiographic Imaging with Cosmic-Ray Muons. Nature, 422, 277.
[21]  Tripathy, S., et al. (2019) Material Identification with Cosmic Ray Muons Using RPCs. Journal of Instrumentation, 14, C07007.
https://doi.org/10.1088/1748-0221/14/07/C07007
[22]  Poulson, D., et al. (2017) Cosmic Ray Muon Computed Tomography of Spent Nuclear Fuel in Dry Storage Casks. Nuclear Instruments and Methods in Physics Research A, 842, 48-53.
https://doi.org/10.1016/j.nima.2016.10.040
[23]  Takamatsu, K., Takegami, H., Ito, C., et al. (2015) Cosmic-Ray Muon Radiography for Reactor Core Observation. Annals of Nuclear Energy, 78, 166-175.
https://doi.org/10.1016/j.anucene.2014.12.017
[24]  Riggi, F., Antonuccio, V., Bandieramonte, M., Becciani, U., Bo-nanno, G., Bonanno, D.L., Bongiovanni, D., Fallica, P.G., Gallo, G., Garozzo, S., Grillo, A., La Rocca, P., Leonora, E., Longhitano, F., Lo Presti, D., Marano, D., Randazzo, N., Parasole, O., Petta, C., Riggi, S., Romeo, G., Romeo, M., Russo, G.V., Santagati, G., Timpanaro, M.C. and Valvo, G. (2017) The Muon Portal Project: Commissioning of the Full Detector and First Results. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 912, 16-19.
https://doi.org/10.1016/j.nima.2017.10.006
[25]  Kamaev, O., Rand, E.T., van der Ende, B.M., Thompson, M., Livingstone, S. and Golovko, V.V. (2019) Complementary Non-Destructive Detection of Nuclear Materials with Passive Neutron and Gamma-Ray Detectors, and a Large-Volume Muon Tomography System. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 944, Article ID: 162503.
https://doi.org/10.1016/j.nima.2019.162503
[26]  Baesso, P., et al. (2013) A High Resolution Resistive Plate Chamber Tracking System Developed for Cosmic Ray Muon Tomography. Journal of Instrumentation, 8, P08006.
https://doi.org/10.1088/1748-0221/8/08/P08006
[27]  Baesso, P., et al. (2012) High Resolution Muon Tracking with Resistive Plate Chambers. Journal of Instrumentation, 7, P11018.
https://doi.org/10.1088/1748-0221/7/11/P11018
[28]  Fraz?o, L., et al. (2016) Discrimination of High-Z Materials in Concrete-Filled Containers Using Muon Scattering Tomography. Journal of Instrumentation, 11, P07020.
https://doi.org/10.1088/1748-0221/11/07/P07020
[29]  刘圆圆, 赵自然, 陈志强, 张丽, 岳骞, 李树伟, 王振天. 一种基于μ子进行核材料探测成像的模拟系统[J]. 中国体视学与图像分析, 2008(2): 102-105.
[30]  叶瑾. 利用宇宙线对高Z物质进行成像的技术研究[D]: [博士学位论文]. 北京: 清华大学, 2009.
[31]  罗志飞. 缪子能量测量及其在缪子散射成像中的应用研究[D]: [博士学位论文]. 北京: 清华大学, 2016.
[32]  Li, Q.-T., et al. (2013) A Sub-Millimeter Spatial Resolution Achieved by a Large Sized Glass RPC. Chinese Physics C, 37, Article ID: 016002.
https://doi.org/10.1088/1674-1137/37/1/016002
[33]  Chen, S., et al. (2014) Simulation of a Small Muon Tomography Station System Based on RPCs. Journal of Instrumentation, 9, C10022.
https://doi.org/10.1088/1748-0221/9/10/C10022
[34]  王月. 灰色关联聚类在宇宙射线μ子探测成像中的应用[J]. 中国原子能科学研究院年报, 2011(1): 292.
[35]  钟金金. 宇宙射线μ子成像在CO2地质封存监测中的应用可行性研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2016.
[36]  庞洪超, 刘森林, 王红艳, 徐勇军, 杨宏伟, 王列民. 宇宙射线μ子探测高Z材料的仿真研究[J]. 原子能科学技术, 2011, 45(7): 872-874.
[37]  王烈铭, 王红艳, 刘志英, 杨宏伟, 庞洪超. 宇宙射线μ子探测裂变核材料的成像算法[J]. 核电子学与探测技术, 2011, 31(8): 874-877.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133