|
过渡金属低温催化挥发性有机物(VOCs)性能研究进展
|
Abstract:
近年来,国际社会对挥发性有机物(VOCs)的排放标准越来越严格,其处理方法是空气污染控制领域的关键问题。在众多挥发性有机物处理技术中,低温催化氧化挥发性有机物以其高效率和经济适用性而被广泛认可。该技术的突破点在于低燃点、高活性、稳定性和低成本的催化剂的研发。本文介绍了三种性能优异的过渡金属催化剂,凭借其较低的成本和出色的稳定性为过渡金属氧化物催化氧化反应的低温催化剂设计提供新思路,并为挥发性有机物催化氧化技术的工业应用提供理论借鉴。
In recent years, the international community’s emission standards for VOCs have become more and more stringent, and their treatment methods are a key issue in the field of air pollution control. Among many volatile organic compounds treatment technologies, low-temperature catalytic oxidation of volatile organic compounds is widely recognized for its high efficiency and economic applicability. The breakthrough point of this technology lies in the research and development of catalysts with low ignition point, high activity, stability and low cost. This article introduces three transition metal catalysts with excellent performance. With their lower cost and excellent stability, they provide new ideas for the design of low-temperature catalysts for the catalytic oxidation of transition metal oxides and provide industrial applications for the catalytic oxidation of volatile organic compounds.
[1] | Gu, D., Guenther, A.B., Shilling, J.E., Yu, H., Huang, M., Zhao, C., Yang, Q., Martin, S.T., Artaxo, P. and Kim, S. (2017) Airborne Observations Reveal Elevational Gradient in Tropical Forest Isoprene Emissions. Nature Communica-tions, 8, Article ID: 15541. https://doi.org/10.1038/ncomms15541 |
[2] | Fogel, S., Doronkin, D.E., Gabrielsson, P. and Dahl, S. (2012) Optimisation of Ag Loading and Alumina Characteristics to Give Sulphur-Tolerant Ag/Al2O3 Catalyst for H2-Assisted NH3-SCR of NOx. Applied Catalysis B: Environmental, 125, 457-464. https://doi.org/10.1016/j.apcatb.2012.06.014 |
[3] | Gupta, V.K. and Verma, N. (2002) Removal of Volatile Organic Compounds by Cryogenic Condensation Followed by Adsorption. Chemical Engineering Science, 57, 2679-2696. https://doi.org/10.1016/S0009-2509(02)00158-6 |
[4] | Luo, J., Zhang, Q., Huang, A. and Suib, S.L. (2000) Total Oxidation of Volatile Organic Compounds with Hydrophobic Cryptomelane-Type Octahedral Molecular Sieves. Mi-croporous and Mesoporous Materials, 35-36, 209-217.
https://doi.org/10.1016/S1387-1811(99)00221-8 |
[5] | Chang, H., Chen, X., Li, J., Ma, L., Wang, C. and Liu, C. (2013) Improvement of Activity and SO2 Tolerance of Sn-Modified MnOx-CeO2 Catalysts for NH3-SCR at Low Temperatures. Environmental Science & Technology, 47, 5294-5301. https://doi.org/10.1021/es304732h |
[6] | Idakiev, V., Tabakova, T., Tenchev, K., Yuan, Z.Y., Ren, T.Z. and Su, B.L. (2012) Gold Catalysts Supported on Ceria-Modified Mesoporous Zirconia for Low-Temperature Water-Gas Shift Reaction. Journal of Porous Materials, 19, 15-20. https://doi.org/10.1007/s10934-010-9441-x |
[7] | Kim, P.S., Kim, M.K., Cho, B.K., Nam, I.-S. and Oh, S.H. (2013) Effect of H2 on deNOx Performance of HC-SCR over Ag/Al2O3: Morphological, Chemical, and Kinetic Changes. Journal of Catalysis, 301, 65-76.
https://doi.org/10.1016/j.jcat.2013.01.026 |
[8] | Fan, L.P., Chen, M., Zhang, Y., Zhou, R. and Zheng, X. (2007) Synthesis and Characterization of New Material—La/Zr/MMT Employed in Acetone Oxidation. Chinese Journal of Chemistry, 25, 666-669.
https://doi.org/10.1002/cjoc.200790124 |
[9] | Shi, J. (2013) On the Synergetic Catalytic Effect in Heterogeneous Nanocomposite Catalysts. Chemical Reviews, 113, 2139-2181. https://doi.org/10.1021/cr3002752 |
[10] | Picasso, G., Quintilla, A., Pina, M.P. and Herguido, J. (2003) Total Combustion of Methyl-Ethyl Ketone over Fe2O3 Based Catalytic Membrane Reactors. Applied Catalysis B Environmental, 46, 133-143.
https://doi.org/10.1016/S0926-3373(03)00219-4 |
[11] | Zhao, Y., Zhang, X., Zhai, J., He, J., Jiang, L., Liu, Z., Nishimoto, S., Murakami, T., Fujishima, A. and Zhu, D. (2008) Enhanced Photocatalytic Activity of Hierarchically Micro-/Nano-Porous TiO2 Films. Applied Catalysis B: Environmental, 83, 24-29. https://doi.org/10.1016/j.apcatb.2008.01.035 |
[12] | Si, W., Wang, Y., Zhao, S., Hu, F.Y. and Li, J. (2016) A Facile Method for in Situ Preparation of the MnO2/LaMnO3 Catalyst for the Removal of Toluene. Environmental Science & Technology, 50, 4572-4578.
https://doi.org/10.1021/acs.est.5b06255 |
[13] | Xie, X., Li, Y., Liu, Z.Q., Haruta, M. and Shen, W. (2009) Low-Temperature Oxidation of CO Catalysed by Co3O4 Nanorods. Nature, 458, 746-749. https://doi.org/10.1038/nature07877 |
[14] | Meng, B., Zhao, Z., Wang, X., Liang, J. and Qiu, J. (2013) Selective Catalytic Reduction of Nitrogen Oxides by Ammonia over Co3O4 Nanocrystals with Different Shapes. Applied Catalysis B: Environmental, 129, 491-500.
https://doi.org/10.1016/j.apcatb.2012.09.040 |
[15] | Liotta, L.F. (2010) Catalytic Oxidation of Volatile Organic Com-pounds on Supported Noble Metals. Applied Catalysis B Environmental, 100, 403-412. https://doi.org/10.1016/j.apcatb.2010.08.023 |
[16] | Hu, F., Chen, J., Peng, Y., Song, H., Li, K. and Li, J. (2018) Novel Nanowire Self-Assembled Hierarchical CeO2 Microspheres for Low Temperature Toluene Catalytic Combustion. Chemical Engineering Journal, 331, 425-434.
https://doi.org/10.1016/j.cej.2017.08.110 |
[17] | Zhang, D., Du, X., Shi, L. and Gao, R. (2012) Shape-Controlled Synthesis and Catalytic Application of Ceria Nanomaterials. Dalton Transactions, 41, 14455-14475. https://doi.org/10.1039/c2dt31759a |
[18] | Mai, H.X., Sun, L.D., Zhang, Y.W., Si, R., Feng, W., Zhang, H., Liu, H. and Yan, C.H. (2005) Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes. The Journal of Physical Chemistry B, 109, 24380-24385. https://doi.org/10.1021/jp055584b |
[19] | Yoon, D.Y., Lim, E., Kim, Y.J., Kim, J.H., Ryu, T., Lee, S., Cho, B.K., Nam, I., Choung, J.W. and Yoo, S. (2014) NO Oxidation Activity of Ag-Doped Perovskite Catalysts. Journal of Catal-ysis, 319, 182-193.
https://doi.org/10.1016/j.jcat.2014.09.007 |
[20] | Tseng, T., Chu, H. and Hsu, H. (2003) Characterization of γ-Alumina-Supported Manganese Oxide as an Incineration Catalyst for Trichloroethylene. Environmental Science & Technology, 37, 171-176. https://doi.org/10.1021/es0255960 |
[21] | Alvarezgalvan, M.C., Vad, O., Arzamendi, G., Pawelec, B., Gandia, L.M. and Jlg, F. (2009) Methyl Ethyl Ketone Combustion over La-Transition Metal (Cr, Co, Ni, Mn) Perovskites. Applied Catalysis B Environmental, 92, 445-453.
https://doi.org/10.1016/j.apcatb.2009.09.006 |
[22] | Zhang, C., Hua, W., Wang, C., Guo, Y., Guo, Y., Lu, G., Baylet, A. and Giroir-Fendler, A. (2013) The Effect of A-Site Substitution by Sr, Mg and Ce on the Catalytic Performance of LaMnO3 Catalysts for the Oxidation of Vinyl Chloride Emission. Applied Catalysis B Environmental, 134-135, 310-315. https://doi.org/10.1016/j.apcatb.2013.01.031 |
[23] | Liu, Y., Dai, H., Deng, J., Du, Y., Li, X., Zhao, Z., Yuan, W., Gao, B., Yang, H. and Guo, G. (2013) In Situ Poly(Methyl Methacrylate)-Templating Generation and Excellent Catalytic Performance of MnOx/3DOM LaMnO3 for the Combustion of Toluene and Methanol. Applied Catalysis B Environmental, 140-141, 493-505.
https://doi.org/10.1016/j.apcatb.2013.04.051 |
[24] | Zhang, X.-M., Deng, Y.-Q., Tian, P., Shang, H.-H., Xu, J. and Han, Y.-F. (2016) Dynamic Active Sites over Binary Oxide Catalysts: In Situ/Operando Spectroscopic Study of Low-Temperature CO Oxidation over MnOx-CeO2 Catalysts. Applied Catalysis B: Environmental, 191, 179-191. https://doi.org/10.1016/j.apcatb.2016.03.030 |