|
基于原位红外技术的Co3O4/CeO2催化剂低温催化甲苯研究
|
Abstract:
利用原位红外表征技术研究了高效自组装双金属Co3O4/CeO2复合催化剂低温催化燃烧甲苯的机理与反应路线。表征显示,甲苯低温催化燃烧的关键是甲苯氧化的中间产物低级羧酸盐进一步氧化为碳酸盐。催化性能的促进作用主要归因于Co和Ce活性位点之间的相互作用引起的C-H键的活化,氧迁移率的提高和中间产物的快速转移。并通过原位红外大致推断出了反应过程:吸附态甲苯→苯甲醛→苯甲酸→高级脂肪酸→小分子羧酸→碳酸盐物质(CO2和H2O)。
In situ DRIFT characterization technology was used to analyze the mechanism and reaction route of high-efficiency self-assembled bimetallic Co3O4/CeO2 composite catalyst for low-temperature catalytic combustion of toluene. Characterization indicates that the key to low-temperature catalytic combustion of toluene is the further oxidation of the intermediate products of toluene oxidation to carbonates. The promotion of catalytic performance is mainly attributed to the activation of the C-H bond caused by the interaction between the active sites of Co and Ce, the improvement of oxygen mobility and the rapid transfer of intermediate products. The reaction process was roughly deduced by in-situ infrared: adsorbed toluene → benzaldehyde → benzoic acid → higher fatty acid → small molecule carboxylic acid → carbonate material (CO2 and H2O).
[1] | Zhang, J., Xiao, J., Chen, X., Liang, X., Fan, L. and Ye, D. (2018) Allowance and Allocation of Industrial Volatile Organic Compounds Emission in China for Year 2020 and 2030. Journal of Environmental Sciences, 69, 155-165.
https://doi.org/10.1016/j.jes.2017.10.003 |
[2] | Bari, M.A. and Kindzierski, W.B. (2018) Ambient Volatile Organic Compounds (VOCs) in Calgary, Alberta: Sources and Screening Health Risk Assessment. Science of the Total Environ-ment, 631-632, 627-640.
https://doi.org/10.1016/j.scitotenv.2018.03.023 |
[3] | Feron, V., Arts, J. and van Bladeren, P. (1992) Volatile Or-ganic Compounds in Indoor Air: Toxicology and Strategy for Further Research. Atmospheric Pollution Research, 134, 18-25. |
[4] | Dumanoglu, Y., Kara, M., Altiok, H., Odabasi, M., Elbir, T. and Bayram, A. (2014) Spatial and Seasonal Variation and Source Apportionment of Volatile Organic Compounds (VOCs) in a Heavily Industrialized Region. At-mospheric Environment, 98, 168-178. https://doi.org/10.1016/j.atmosenv.2014.08.048 |
[5] | Wang, S. and Hao, J. (2012) Air Quality Management in China: Issues, Challenges, and Options. Journal of Environmental Sciences, 24, 2-13. https://doi.org/10.1016/S1001-0742(11)60724-9 |
[6] | Héqueta, V., Raillard, C., Debono, O., Thévenet, F., Locoge, N. and Le Coq, L. (2018) Photocatalytic Oxidation of VOCs at PPB Level Using a Closed-Loop Reactor: The Mixture Effect. Applied Catalysis B: Environmental, 226, 473-486. https://doi.org/10.1016/j.apcatb.2017.12.041 |
[7] | Aunan, K., Berntsen, T.K. and Seip, H.M. (2000) Surface Ozone in China and Its Possible Impact on Agricultural Crop Yields. Ambio, 29, 294-301. https://doi.org/10.1579/0044-7447-29.6.294 |
[8] | Durme, J.V., Dewulf, J., Sysmans, W., Leys, C. and Langenhove, H.V. (2007) Abatement and Degradation Pathways of Toluene in Indoor Air by Positive Co-rona Discharge. Chemosphere, 68, 1821-1829.
https://doi.org/10.1016/j.chemosphere.2007.03.053 |
[9] | Chen, L., Tang, J., Song, L., Chen, P., He, J., Au, C. and Yin, S. (2019) Heterogeneous Photocatalysis for Selective Oxidation of Alcohols and Hydrocarbons. Applied Catalysis B: Environmental, 242, 379-388.
https://doi.org/10.1016/j.apcatb.2018.10.025 |
[10] | Ma, C.Y., Wang, D.H., Xue, W.J., Dou, B.J., Wang, H.L. and Hao, Z.P. (2011) Investigation of Formaldehyde Oxidation over Co3O4 and Au/Co3O4-CeO2 Catalysts at Room Temperature: Effective Removal and Determination of Reaction Mechanism. Environmental Science & Technology, 45, 3628-3634. https://doi.org/10.1021/es104146v |
[11] | Zhu, Y., Jain, N. and Hudait, M. (2014) X-Ray Photoelectron Spectroscopy Analysis and Band Offset Determination of CeO2 Deposited on Epitaxial (100), (110), and (111) Ge. Journal of Vacuum Science & Technology B, 32, Article ID: 011217. https://doi.org/10.1116/1.4862160 |
[12] | Anandan, C. and Bera, P. (2013) XPS Studies on the Interaction of CeO2 with Silicon in Magnetron Sputtered CeO2 Thin Films on Si and Si3N4 Substrates. Applied Surface Science, 283, 297-303.
https://doi.org/10.1016/j.apsusc.2013.06.104 |
[13] | Kibis, L.S., et al. (2017) Redox and Catalytic Properties of Rhx-Ce1?xO2?δ Solid Solution. The Journal of Physical Chemistry C, 121, 26925-26938. https://doi.org/10.1021/acs.jpcc.7b09983 |
[14] | Nassiri, H., Lee, K.E., Hu, Y., Hayes, R.E., Scott, R.W. and Sem-agina, N. (2017) Water Shifts PdO-Catalyzed Lean Methane Combustion to Pt-Catalyzed Rich Combustion in Pd-Pt Catalysts: In Situ X-Ray Absorption Spectroscopy. Journal of Catalysis, 352, 649-656. https://doi.org/10.1016/j.jcat.2017.06.008 |
[15] | Hu, F., Chen, J., Peng, Y., Song, H., Li, K. and Li, J. (2018) Novel Nanowire Self-Assembled Hierarchical CeO2 Microspheres for Low Temperature Toluene Catalytic Combustion. Chemical Engineering Journal, 331, 425-434.
https://doi.org/10.1016/j.cej.2017.08.110 |
[16] | Xie, S., Dai, H., Deng, J., Liu, Y., Yang, H., Jiang, Y., Tan, W., Ao, A. and Guo, G. (2013) Au/3DOM Co3O4: Highly Active Nanocatalysts for the Oxidation of Carbon Monoxide and Toluene. Nanoscale, 5, 11207-11219.
https://doi.org/10.1039/c3nr04126c |
[17] | Saqer, S.M., Kondarides, D.I. and Verykios, X.E. (2011) Catalytic Oxidation of Toluene over Binary Mixtures of Copper, Manganese and Cerium Oxides Supported on γ-Al2O3. Applied Catalysis B: Environmental, 103, 275-286.
https://doi.org/10.1016/j.apcatb.2011.01.001 |
[18] | Nie, L., Mei, D., Xiong, H., Peng, B., Ren, Z., Hernandez, X.I.P., Andrew, D., Wang, M., Engelhard, H.M., Kovarik, L., Datye, A.K. and Wang, Y. (2017) Activation of Surface Lattice Oxygen in Single-Atom Pt/CeO2 for Low-Temperature CO Oxidation. Science, 358, 1419-1423. https://doi.org/10.1126/science.aao2109 |
[19] | Wang, Y., Guo, L., Chen, M. and Shi, C. (2018) CoMnxOy Nanosheets with Molecular-Scale Homogeneity: An Excellent Catalyst for Toluene Combustion. Catalysis Science & Technology, 8, 459-471.
https://doi.org/10.1039/C7CY01867C |
[20] | Wang, C., Gu, X.K., Yan, H., Lin, Y., Li, J., Liu, D., Li, W.X. and Lu, J. (2016) Random Step Maneuver Algorithm with Normally Distributed Starting Times. ACS Catalysis, 7, 887-891. https://doi.org/10.1021/acscatal.6b02685 |
[21] | Zhang, H., Sui, S., Zheng, X., Cao, R. and Zhang, P. (2019) One-Pot Synthesis of Atomically Dispersed Pt on MnO2 for Efficient Catalytic Decomposition of Toluene at Low Temperatures. Applied Catalysis B: Environmental, 257, Article ID: 117878. https://doi.org/10.1016/j.apcatb.2019.117878 |
[22] | Dong, C., Qu, Z., Qin, Y., Fu, Q., Sun, H. and Duan, X. (2019) Revealing the Highly Catalytic Performance of Spinel CoMn2O4 for Toluene Oxidation: Involvement and Replenishment of Oxygen Species Using In Situ Designed-TP Techniques. ACS Catalysis, 9, 6698-6710. https://doi.org/10.1021/acscatal.9b01324 |
[23] | Zhao, S., Hu, F.Y. and Li, J.H. (2016) Hierarchical Core-Shell Al2O3 @Pd-CoAlO Microspheres for Low-Temperature toluene Combustion. ACS Catalysis, 6, 3433-3441. https://doi.org/10.1021/acscatal.6b00144 |