|
Material Sciences 2021
金属铋修饰的P25光催化产氢活性研究
|
Abstract:
本文采用两步法制备得到不同质量比的Bi/P25 (商业TiO2)复合纳米催化剂。所得复合光催化剂表现出明显优于P25的光催化产氢性能。其中,质量分数为5 wt%的样品表现出最好的光催化活性。当牺牲剂为20 vol%的甲醇时,其4小时的产氢速率可达460 μmol?g?1?h?1,是未修饰P25的8倍。光电性能测试结果表明,金属Bi的引入能有效地提升载流子的迁移速率与光生电子和空穴的分离效率,降低电子和空穴的复合能力,从而提升光催化活性。此外,在光催化过程中金属铋也可以作为光生电子受体,为反应提供更多的析氢活性位点,进而促进H2的产生。
In this work, Bi/P25 (Commercial TiO2) nanocomposites with different mass ratios of Bi were prepared by two-step method. The obtained composites were used as photocatalyst for hydrogen evolution. With 20 vol% methanol as sacrifice reagent, Bi/P25 nanocomposites with mass ratio of 5 wt% can achieve 460 μmol?g?1?h?1 in 4 hours under simulated solar light illumination, which was 8 times higher than that of unmodified P25. The photoelectric performance test indicated that the introduction of metallic Bi can effectively improve the mobility and separation rate of the photo-generated carriers. In addition, metallic bismuth can act as photoelectron acceptor in the reaction system and provide more active sites for hydrogen evolution, thus promoting the production of H2.
[1] | Sharma, S., Kumar, D. and Khare, N. (2019) Plasmonic Ag Nanoparticles Decorated Bi2S3 Nanorods and Nanoflowers: Their Comparative Assessment for Photoe-lectrochemical Water Splitting. International Journal of Hydrogen Energy, 44, 3538-3552. https://doi.org/10.1016/j.ijhydene.2018.11.238 |
[2] | Police, A.K.R., Vattikuti, S.V.P., Mandari, K.K., Chen-naiahgari, M., Phanikrishna Sharma, M.V., Valluri, D.K., et al. (2018) Bismuth Oxide Cocatalyst and Copper Oxide Sensitizer in Cu2O/TiO2/Bi2O3 Ternary Photocatalyst for Efficient Hydrogen Production under Solar Light Irradiation. Ceramics International, 44, 11783-11791.
https://doi.org/10.1016/j.ceramint.2018.03.262 |
[3] | Zhou, C., Jiang, C., Wang, R., Chen, J. and Wang, G. (2020) SPR-Effect Enhanced Semimetallic Bi0/p-BiOI/n-CdS Photocatalyst with Spatially Isolated Active Sites and Improved Carrier Transfer Kinetics for H2 Evolution. Industrial & Engineering Chemistry Research, 59, 8183-8194. https://doi.org/10.1021/acs.iecr.0c00483 |
[4] | Wei, Z., Liu, J., Fang, W., Guo, W., Zhu, Y., Xu, M., et al. (2019) Photocatalytic Hydrogen Energy Evolution from Antibiotic Wastewater via Metallic bi Nanosphere Doped g-C3N4: Per-formances and Mechanisms. Catalysis Science & Technology, 9, 5279-5291. https://doi.org/10.1039/C9CY01375J |
[5] | Lv, J., Zhang, J., Liu, J., Li, Z., Dai, K. and Liang, C. (2017) Bi SPR-Promoted Z-Scheme Bi2MoO6/CdS-Diethylenetriamine Composite with Effectively Enhanced Visible Light Photocatalytic Hydrogen Evolution Activity and Stability. ACS Sustainable Chemistry & Engineering, 6, 696-706. https://doi.org/10.1021/acssuschemeng.7b03032 |
[6] | Gao, D.D., Yu, H.G. and Xu, Y. (2018) Direct Photoin-duced Synthesis and High H2-Evolution Performance of Bi-Modified TiO2 Photocatalyst in a Bi(III)-EG Complex System. Applied Surface Science, 462, 623-632.
https://doi.org/10.1016/j.apsusc.2018.08.061 |
[7] | Qin, F., Li, G., Lu, Z., Lu, Z., Sun, H. and Chen, R. (2012) Large-Scale Synthesis of Bismuth Hollow Nanospheres for Highly Efficient Cr(VI) Removal. Dalton Transations, 41 11263-11266. https://doi.org/10.1039/c2dt31021j |
[8] | Chen, X.B., Shen, S.H., Guo, L.J. and Mao, S.S. (2010) Semiconductor-Based Photocatalytic Hydrogen Generation. Chemical Reviews, 110, 6503-6570. https://doi.org/10.1021/cr1001645 |
[9] | Tahir, M., Tasleem, S. and Tahir, B. (2020) Recent Development in Band Engineering of Binary Semiconductor Materials for Solar Driven Photocatalytic Hy-drogen Production. International Journal of Hydrogen Energy, 45, 15985-16038.
https://doi.org/10.1016/j.ijhydene.2020.04.071 |
[10] | Maeda, K. (2011) Photocatalytic Water Splitting using Semiconductor Particles: History and Recent Developments. Journal of Photochemistry and Photobiology C: Photo-chemistry Reviews, 12, 237-268.
https://doi.org/10.1016/j.jphotochemrev.2011.07.001 |
[11] | Wang, Q. and Domen, K. (2020) Particulate Photo-catalysts for Light-driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews, 120, 919-985. https://doi.org/10.1021/acs.chemrev.9b00201 |
[12] | Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38. https://doi.org/10.1038/238037a0 |
[13] | Kumaravel, V., Mathew, S., Bartlett, J. and Pillai, S.C. (2019) Photo-catalytic Hydrogen Production Using Metal Doped TiO2: A Review of Recent Advances. Applied Catalysis B: Envi-ronmental, 244, 1021-1064.
https://doi.org/10.1016/j.apcatb.2018.11.080 |
[14] | Sajan, C.P., Wageh, S., Al-Ghamdi, A.A., Yu, J. and Cao, S. (2015) TiO2 Nanosheets with Exposed {001} Facets for Photocatalytic Applications. Nano Research, 9, 3-27. https://doi.org/10.1007/s12274-015-0919-3 |
[15] | David, S., Mahadik, M.A., Chung, H.S., Ryu, J.H. and Jang, J.S. (2017) Facile Hydrothermally Synthesized a Novel CdS Nanoflower/Rutile-TiO2 Nanorod Heterojunction Pho-toanode Used for Photoelectrocatalytic Hydrogen Generation. ACS Sustainable Chemistry & Engineering, 5, 7537-7548. https://doi.org/10.1021/acssuschemeng.7b00558 |
[16] | Peng, Y.-P., Chen, H. and Huang, C.P. (2017) The Synergistic Effect of Photoelectrochemical (PEC) Reactions Exemplified by Concurrent Perfluorooctanoic Acid (PFOA) Degradation and Hydrogen Generation over Carbon and Nitrogen Codoped TiO2 Nanotube Arrays (C-N-TNTAs) Photoelectrode. Applied Catalysis B: Environmental, 209, 437-446.
https://doi.org/10.1016/j.apcatb.2017.02.084 |
[17] | Wang, P., Lu, Y., Wang, X. and Yu, H. (2017) Co-Modification of Amorphous-Ti(IV) Hole Cocatalyst and Ni(OH)2 Electron Cocatalyst for Enhanced Photocatalytic H2-Production Performance of TiO2. Applied Surface Science, 391, 259-266. https://doi.org/10.1016/j.apsusc.2016.06.108 |
[18] | Yan, B., Zhou, J., Liang, X., Song, K. and Su, X. (2017) Facile Synthesis of Flake-Like TiO2/C Nano-Composites for Photocatalytic H2 Evolution under Visible-Light Irradiation. Ap-plied Surface Science, 392, 889-896.
https://doi.org/10.1016/j.apsusc.2016.09.117 |
[19] | He, Z., Fu, J., Cheng, B., Yu, J. and Cao, S. (2017) Cu2(OH)2CO3 Clusters: Novel Noble-Metal-Free Cocatalysts for Efficient Photocatalytic Hydrogen Production from Water Splitting. Applied Catalysis B: Environmental, 205, 104-111.
https://doi.org/10.1016/j.apcatb.2016.12.031 |
[20] | Ran, J., Zhang, J., Yu, J., Jaroniec, M. and Qiao, S.Z. (2014) Earth-Abundant Cocatalysts for Semiconductor-Based Photocatalytic Water Splitting. Chemical Society Reviews, 43, 7787-7812. https://doi.org/10.1039/C3CS60425J |
[21] | N., Z.H., Chen, W.T., Chan, A., Jovic, V., Ina, T., Idriss, H., et al. (2015) The Roles of Metal Co-Catalysts and Reaction Media in Photocatalytic Hydrogen Production: Perfor-mance Evaluation of M/TiO2 Photocatalysts (M = Pd, Pt, Au) in Different Alcohol-Water Mixtures. Journal of Catalysis, 329, 355-367. https://doi.org/10.1016/j.jcat.2015.06.005 |