全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

云母纳米片与硅基底之间吸附能的鼓泡测量
Adhesion Energy between Mica Nanolayers and Silicon Substrate Determined by a Blister Testing

DOI: 10.12677/MS.2021.115059, PP. 511-519

Keywords: 云母,纳米片,吸附能,硅,鼓泡法
Mica
, Nanolayer, Adhesion Energy, Si, Blister Test

Full-Text   Cite this paper   Add to My Lib

Abstract:

云母纳米片(MNL)能显著改善硅(Si)微纳电子器件的电子输运性能,是一种非常有潜力的介电材料。MNL与接触的Si基底之间的界面吸附行为对于所构建的微纳电子器件的性能和力学稳定性极为关键,但是测试手段和技术上的困难导致我们对这类界面吸附行为的认知非常有限。本文采用了颗粒支撑的鼓泡方法测量了MNL与Si基底之间的界面吸附能,其测量结果为42.9 ± 8.9 mJ/m2,接近范德华吸附的理论估算值~30 mJ/m2。同时,基于对比测试结果,本文还对颗粒支撑的鼓泡测试法在具体测量中所涉及到的力学模型的适用条件进行了讨论。这对提高鼓泡法在薄膜与基底之间界面吸附能的测量可靠性和准确性方面具有非常重要的指导和参考意义。
Mica nanolayers (MNL) are a potential dielectric material, which can significantly improve the electron transport properties of Silicon (Si) micro-nano electronic devices. The adhesion energy between MNL and the underlying Si substrate plays a critical role on the operation and stability of the electronic devices, but is not well understood due to the challenges in the experimental testing and technical difficulties. In this study, the adhesion energy between MNL and Si substrate is de-termined by a particle-loaded blister test. The measured value of 42.9 ± 8.9 mJ/m2 is close to the theoretical value of ~30 mJ/m2 predicted by van de Waals theory. The validity of the mechanical models related to the particle-loaded blister test was discussed, based on the comparative test results in our measurement. This will be of great benefit to improving the accuracy and reliability of the particle-loaded blister test for determining adhesion energy between thin films and substrates.

References

[1]  Pizzocchero, F., Gammelgaard, L., Jessen, B.S., Caridad, J.M., Wang, L., Hone, J., Boggild, P. and Booth, T.J. (2016) The Hot Pick-Up Technique for Batch Assembly of van der Waals Heterostructures. Nature Communications, 7, Article No. 11894.
https://doi.org/10.1038/ncomms11894
[2]  Liu, J.L. and Feng, X.Q. (2012) On Elastocapillarity: A Review. Acta Mechanica Sinica, 28, 928-940.
https://doi.org/10.1007/s10409-012-0131-6
[3]  Zhang, W.-M., Yan, H.N., Peng, Z.-K. and Meng, G. (2014) Electrostatic Pull-In Instability in MEMS/NEMS: A Review. Sensors and Actuators A: Physical, 214, 187-218.
https://doi.org/10.1016/j.sna.2014.04.025
[4]  Israelachvili, J.N. (2010) Intermolecular and Surface Forces. Else-vier Science, Amsterdam.
[5]  赵亚溥. 表面与界面物理力学[M]. 北京: 科学出版社, 2012.
[6]  Kleinbichler, A., Bartosik, M., Volker, B. and Cordill, M.J. (2017) Thin Film Adhesion of Flexible Electronics Influenced by Interlayers. Advanced Engineering Materials, 19, Article ID: 1600665.
https://doi.org/10.1002/adem.201600665
[7]  Liu, X.L. and Hersam, M.C. (2018) Interface Characterization and Control of 2D Materials and Heterostructures. Advanced Materials, 30, Article ID: 1801586.
https://doi.org/10.1002/adma.201801586
[8]  Liechti, K.M. (2019) Characterizing the Interfacial Behavior of 2D Materials: A Review. Experimental Mechanics, 59, 395-412.
https://doi.org/10.1007/s11340-019-00475-6
[9]  Tsegaye, M.Y. and Won, S. (2019) Adhesion Properties of 2D Materials. Journal of Physics D: Applied Physics, 52, Article ID: 364002.
https://doi.org/10.1088/1361-6463/ab27ad
[10]  Dai, Z.H., Liu, L.Q. and Zhang, Z. (2019) Strain Engineering of 2D Materials: Issues and Opportunities at the Interface. Advanced Materials, 31, Article ID: 1805417.
https://doi.org/10.1002/adma.201805417
[11]  Castellanos-Gomez, A., Poot, M., Amor-Amorós, A., Steele, G.A., van der ZantHerre, S.J., Nicolás, A. and Rubio-Bollinger, G. (2012) Mechanical Properties of Freely Suspended Atomically Thin Dielectric Layers of Mica. Nano Research, 5, 550-557.
https://doi.org/10.1007/s12274-012-0240-3
[12]  Low, C.G., Zhang, Q., Hao, Y.F. and Ruoff, R.S. (2014) Gra-phene Field Effect Transistors with Mica as Gate Dielectric Layers. Small, 10, 4213-4218.
https://doi.org/10.1002/smll.201303929
[13]  Chen, Y.L., Fan, L.L., Fang, Q., Xu, W.Y., Chen, S., Zan, G.B., Ren, H., Song, L. and Zou, C.W. (2017) Free-Standing SWNTs/VO2/Mica Hierarchical Films for High-Performance Ther-mochromic Devices. Nano Energy, 31, 144-151.
https://doi.org/10.1016/j.nanoen.2016.11.030
[14]  Low, C. and Zhang, Q. (2012) Ultra-Thin and Flat Mica as Gate Dielectric Layers. Small, 8, 2178-2183.
https://doi.org/10.1002/smll.201200300
[15]  Rogers, J.A. and Huang, Y.G. (2009) A Curvy, Stretchy Future for Electronics. Proceedings of the National Academy of Sciences of the United States of America, 106, 10875-10876.
https://doi.org/10.1073/pnas.0905723106
[16]  Harris, K.D., Elias, A.L. and Chung, H.J. (2016) Flexible Elec-tronics under Strain: A Review of Mechanical Characterization and Durability Enhancement Strategies. Journal of Materials Science, 51, 2771-2805.
https://doi.org/10.1007/s10853-015-9643-3
[17]  Zimmermann, S., Klauser, W., Mead, J., Wang, S.L., Huang, H. and Fatikow, S. (2019) A Laterally Sensitive Colloidal Probe for Accurately Measuring Nanoscale Adhesion of Textured Surfaces. Nano Research, 12, 389-396.
https://doi.org/10.1007/s12274-018-2228-0
[18]  Leite, F.L., Bueno, C.C., Da Roz, A.L., Ziemath, E.C. and Oliveira, O.N. (2012) Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy. International Journal of Molecular Sciences, 13, 12773-12856.
https://doi.org/10.3390/ijms131012773
[19]  Koenig, S.P., Boddeti, N.G., Dunn, M.L. and Scott, B.J. (2011) Ul-trastrong Adhesion of Graphene Membranes. Nature Nanotechnology, 6, 543-546.
https://doi.org/10.1038/nnano.2011.123
[20]  Lee, M.J., Xie, H.T., Wang, S.L. and Huang, H. (2018) Enhanced Adhesion of ZnO Nanowires during in Situ Scanning Electron Microscope Peeling. Nanoscale, 10, 3410-3420.
https://doi.org/10.1039/C7NR09423J
[21]  Roenbeck, M.R., Wei, X.D., Beese, A.M., Naraghi, M., Al’ona, F., Paci, J.T., Schatz, G.C. and Espinosa, H.D. (2014) In Situ Scanning Electron Microscope Peeling to Quantify Surface Energy between Multiwalled Carbon Nanotubes and Graphene. ACS Nano, 8, 124-138.
https://doi.org/10.1021/nn402485n
[22]  Tang, D.-M., Kvashnin, D.G., Najmaei, S., Bando, Y., Kimoto, K., Koskinen, P., Ajayan, P.M., Yakobson, B.I., Sorokin, P.B., Lou, J. and Golberg, D. (2014) Nanomechanical Cleavage of Molybdenum Disulphide Atomic Layers. Nature Communications, 5, 3631.
https://doi.org/10.1038/ncomms4631
[23]  Mead, J.L., Wang, S.L., Zimmermann, S. and Huang, H. (2020) Inter-facial Adhesion of ZnO Nanowires on a Si Substrate in Air. Nanoscale, 12, 8237-8247.
https://doi.org/10.1039/D0NR01261K
[24]  Zong, Z., Chen, C.-L., Dokmeci, M.R. and Wan, K.-T. (2010) Direct Measurement of Graphene Adhesion on Silicon Surface by Intercalation of Nanoparticles. Journal of Applied Physics, 107, Article ID: 026104.
https://doi.org/10.1063/1.3294960
[25]  Gao, X.Y., Yu, X.Y., Li, B.X., Fan, S.C. and Li, C. (2017) Measuring Graphene Adhesion on Silicon Substrate by Single and Dual Nanoparticle-Loaded Blister. Advanced Materials Interfaces, 4, Article ID: 1601023.
https://doi.org/10.1002/admi.201601023
[26]  Cao, Z.y., Tao, L., Akinwande, D., Huang, R. and Liechti, K.M. (2016) Mixed-Mode Traction-Separation Relations between Graphene and Copper by Blister Tests. International Journal of Solids and Structures, 84, 147-159.
https://doi.org/10.1016/j.ijsolstr.2016.01.023
[27]  Sanchez, D.A., Dai, Z.H., Wang, P., Cantu-Chavez, A., Brennan, C.J., Huang, R. and Lu, N.S. (2018) Mechanics of Spontaneously Formed Nanoblisters Trapped by Transferred 2D Crystals. Proceedings of the National Academy of Sciences of the United States of America, 115, 7884-7889.
https://doi.org/10.1073/pnas.1801551115
[28]  Li, G.X., Yilmaz, C., An, X.H., Somu, S., Kar, S., Jung, Y.J., Busnaina, A. and Wan, K.T. (2013) Adhesion of Graphene Sheet on Nano-Patterned Substrates with Nano-Pillar Array. Journal of Applied Physics, 113, Article ID: 244303.
https://doi.org/10.1063/1.4811718
[29]  Yu, B.W., Hou, L.Z., Wang, S.L. and Huang, H. (2019) Environ-ment-Dependent Adhesion Energy of Mica Nanolayers Determined by a Nanomanipulation-Based Bridging Method. Advanced Materials Interfaces, 6, Article ID: 1801552.
https://doi.org/10.1002/admi.201801552
[30]  Yu, B.W., Wang, F., Wang, S.L., Hu, Y.J. and Huang, H. (2020) The Adhesion of Mica Nanolayers on a Silicon Substrate in Air. Advanced Materials Interfaces, 7, Article ID: 2000541.
https://doi.org/10.1002/admi.202000541
[31]  Yu, B.W., Hou, L.Z., Wang, S.L. and Huang, H. (2021) The Adhe-sion of a Mica Nanolayer on a Single-Layer Graphene Supported by SiO2 Substrate Characterised in Air. Nanotech-nology, 32, Article ID: 045701.
https://doi.org/10.1088/1361-6528/abbf25
[32]  O’Brien, E.P., Goldfarb, S. and White, C.C. (2005) Influence of Experimental Setup and Plastic Deformation on the Shaft-Loaded Blister Test. The Journal of Adhesion, 81, 599-621.
https://doi.org/10.1080/00218460590954601
[33]  Malyshev, B.M. and Salganik, R.L. (1965) The Strength of Adhesive Joints Using the Theory of Cracks. International Journal of Fracture Mechanics, 1, 114-128.
https://doi.org/10.1007/BF00186749
[34]  Zhao, M.H., Zheng, W.L., Fan, C.Y. and Pan, E.N. (2011) Nonlinear Elastic Mechanics of the Ball-Loaded Blister Test. International Journal of Engineering Science, 49, 839-855.
https://doi.org/10.1016/j.ijengsci.2011.04.007
[35]  Wan, K.-T. (1999) Fracture Mechanics of a Shaft-Loaded Blister Test-Transition from a Bending Plate to a Stretching Membrane. The Journal of Adhesion, 70, 209-219.
https://doi.org/10.1080/00218469908009556
[36]  Bergstrom, L. (1997) Hamaker Constants of Inorganic Materials. Advances in Colloid and Interface Science, 70, 125-169.
https://doi.org/10.1016/S0001-8686(97)00003-1
[37]  Wan, K.T., Smith, D.T. and Lawn, B.R. (1992) Fracture and Contact Adhesion Energies of Mica Mica, Silica Silica, and Mica Silica Interfaces in Dry and Moist Atmospheres. Journal of the American Ceramic Society, 75, 667-676.
https://doi.org/10.1111/j.1151-2916.1992.tb07857.x
[38]  Hou, L.Z., Lee, M.J., Wang, S.L. and Huang, H. (2019) The Kinetic Frictional Shear Stress of ZnO Nanowires on Graphite and Mica Substrates. Applied Surface Science, 465, 584-590.
https://doi.org/10.1016/j.apsusc.2018.09.143

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133