全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物与青枯病互作研究进展
Research Progress in the Interaction between Plant and Bacterial Wilt

DOI: 10.12677/BR.2021.103031, PP. 216-224

Keywords: 青枯菌,植物,致病机理,抗病机制,防治
Bacterial Wilt
, Plant, Pathogenic Mechanism, Disease Resistance Mechanism, Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

由青枯雷尔氏菌引起的青枯病是影响农作物产量的主要病害之一,而我国对青枯病的防治目前尚未发现十分行之有效的措施。因此,了解青枯菌与植物的互作模式,对开辟防治青枯病的新思路具有重要意义。笔者在国内外学者研究文献的基础上,简单归纳了植物青枯菌的分类系统及发病特征,从分子水平上阐述了青枯菌在寄主植物根细胞间隙定植的侵染过程以及致病机理,从形态学、生理生化和基因表达调控三个方面分析了植物对青枯菌的抗性机制,指出了农业防治、药剂防治、生物防治等防治青枯病措施的局限性,并简要介绍了抗青枯病分子育种的研究进展。认为种植抗青枯病的多系品种和混合品种是控制青枯病危害的有效途径,据此提出挖掘多抗原抗性基因,进而培育抗青枯病新品种是防治青枯病的重要发展方向。
Bacterial wilt caused by Ralstonia solanacearum is one of the main diseases which affect crop yield. However, no effective measures have been found to control bacterial wilt in China. Therefore, understanding the interaction mode between Ralstonia solanacearum and plants is of great significance to develop new ideas for the control of bacterial wilt. On the basis of the literature of domestic and foreign scholars, the classification system and pathogenic characteristics of Ralstonia solanacearum were summarized, the infection process and pathogenic mechanism of Ralstonia solanacearum colonization in the root intercellular space of host plants were elaborated from the molecular level, and the resistant mechanism of the plant to Ralstonia solanacearum was analyzed from the aspects of morphology, physiology, biochemistry and regulation of gene expression. In addition, the limitation of agricultural control, chemical control and biological control of bacterial wilt was pointed out, and the research progress of molecular breeding for bacterial wilt resistance was briefly introduced. It is considered that planting multi-line varieties and mixed varieties with resistance to bacterial wilt is an effective way to control the damage of bacterial wilt. Accordingly, it is suggested that mining multi-antigen resistance genes and breeding new varieties resistant to bacterial wilt is an important development direction for the control of bacterial wilt.

References

[1]  Wicker, E., Grassart, L., Coranson Beaudu, R., et al. (2007) Ralstonia solanacearum Strains from Martinique (French West Indies) Exhibiting a New Pathogenic Potential. Applied and Environmental Microbiology, 73, 6790-6801.
https://doi.org/10.1128/AEM.00841-07
[2]  Yuliar, Nion, Y.A. and Toyota, K. (2015) Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia solanacearum. Microbes & Environments, 30, 1-11.
https://doi.org/10.1264/jsme2.ME14144
[3]  Palleroni, N.J., Kunisawa, R., Contopoulou, R., et al. (1973) Nucleic Acid Homologies in the Genus Pseudomonas. International Journal of Systematic and Evolutionary Microbiology, 23, 333-339.
https://doi.org/10.1099/00207713-23-4-333
[4]  Fegan, M. and Prior, P. (2005) How Complex Is the “Ralstonia solanacearum Species Complex”. APS Press, St. Paul, 449-462.
[5]  Hayward, A.C. (1991) Biology and Epidemiology of Bacterial Wilt Caused by Ralstonia solanacearum. Annual Review of Phytopathology, 29, 65-87.
https://doi.org/10.1146/annurev.py.29.090191.000433
[6]  Poueymiro, M. and Genin, S. (2009) Secreted Proteins from Ralstonia solanacearum: A Hundred Tricks to Kill a Plant. Current Opinion in Microbiology, 12, 44-52.
https://doi.org/10.1016/j.mib.2008.11.008
[7]  杨玉红. 茄科植物青枯菌病害研究进展[J]. 江西农业学报, 2008, 20(5): 54-55, 58.
[8]  彭卫兵, 高宗仙, 汪金香. 2016年繁昌县番茄青枯病暴发原因与防治对策[J]. 现代农业科技, 2017(13): 118-119.
[9]  Hikichi, Y., Mori, Y., Ishikawa, S., et al. (2017) Regulation Involved in Colonization of Intercellular Spaces of Host Plants in Ralstonia solanacearum. Frontiers in Plant Science, 8, 967.
https://doi.org/10.3389/fpls.2017.00967
[10]  Mori, Y., Ishikawa, S., Ohnishi, H., et al. (2018) Involvement of Ralfuranones in the Quorum Sensing Signalling Pathway and Virulence of Ralstonia solanacearum Strain OE1-1. Molecular Plant Pathology, 19, 454-463.
https://doi.org/10.1111/mpp.12537
[11]  Genin, S. and Denny, T.P. (2012) Pathogenomics of the Ralstonia solanacearum Species Complex. Annual Review of Phytopathology, 50, 67-89.
https://doi.org/10.1146/annurev-phyto-081211-173000
[12]  Kang, Y., Liu, H., Genin, S., et al. (2002) Ralstonia solanacearum Requires Type 4 Pili to Adhere to Multiple Surfaces and for Natural Transformation and Virulence. Molecular Microbiology, 46, 427-437.
https://doi.org/10.1046/j.1365-2958.2002.03187.x
[13]  Gijsegem, F.V., Vasse, J., Rycke, R.D., et al. (2002) Genetic Dissection of the Ralstonia solanacearum Hrp Gene Cluster Reveals That the HrpV and HrpX Proteins Are Required for Hrp Pilus Assembly. Molecular Microbiology, 44, 935-946.
https://doi.org/10.1046/j.1365-2958.2002.02936.x
[14]  Liu, H., Kang, Y., Genin, S., et al. (2001) Twitching Motility of Ralstonia solanacearum Requires a Type IV Pilus System. Microbiology, 147, 3215-3229.
https://doi.org/10.1099/00221287-147-12-3215
[15]  Hikichi, Y., Yoshimochi, T., Tsujimoto, S., et al. (2007) Global Regulation of Pathogenicity Mechanism of Ralstonia solanacearum. Plant Biotechnology, 24, 149-154.
https://doi.org/10.5511/plantbiotechnology.24.149
[16]  Valls, M., Genin, S. and Boucher, C. (2006) Integrated Regulation of the Type III Secretion System and Other Virulence Determinants in Ralstonia solanacearum. PLoS Pathogens, 2, 798-807.
https://doi.org/10.1371/journal.ppat.0020082
[17]  Shen, F., Yin, W., Song, S., et al. (2020) Ralstonia solanacearum Promotes Pathogenicity by Utilizing L-glutamic Acid from Host Plants. Molecular Plant Pathology, 21, 1099-1110.
https://doi.org/10.1111/mpp.12963
[18]  霍沁建, 张深, 王若焱. 烟草青枯病研究进展[J]. 中国农学通报, 2007, 23(8): 364-368.
[19]  周训军, 王静, 杨玉文, 等. 烟草青枯病研究进展[J]. 微生物学通报, 2012, 39(10): 1479-1486.
[20]  朱圣杰, 赵亚兰, 王学东. 青枯菌胞外酶活性与致病性之间的关系初探[J]. 河套大学学报, 2008, 5(4): 13-15.
[21]  Genin, S. (2010) Molecular Traits Controlling Host Range and Adaptation to Plants in Ralstonia solanacearum. New Phytologist, 187, 920-928.
https://doi.org/10.1111/j.1469-8137.2010.03397.x
[22]  Boucher, C.A., Van Gijsegem, F., Barberis, P.A., et al. (1987) Ralstonia solanacearum Genes Controlling Both Pathogenicity on Tomato and Hypersensitivity on Tobacco Are Clustered. Journal of Bacteriology, 169, 5626-5632.
https://doi.org/10.1128/JB.169.12.5626-5632.1987
[23]  Büttner, D. (2016) Behind the Lines-Actions of Bacterial Type III Effector Proteins in Plant Cells. FEMS Microbiology Reviews, 40, 894-937.
https://doi.org/10.1093/femsre/fuw026
[24]  Wei, Y., Balaceanu, A., Rufian, J.S., et al. (2020) An Immune Receptor Complex Evolved in Soybean to Perceive a Polymorphic Bacterial Flagellin. Nature Communications, 11, 3763.
https://doi.org/10.1038/s41467-020-17573-y
[25]  Macho, A.P. (2016) Subversion of Plant Cellular Functions by Bacterial Type-III Effectors: Beyond Suppression of Immunity. New Phytologist, 210, 51-57.
https://doi.org/10.1111/nph.13605
[26]  Peeters, N., Carrère, S., Anisimova, M., et al. (2013) Repertoire, Unified Nomenclature and Evolution of the Type III Effector Gene Set in the Ralstonia solanacearum Species Complex. BMC Genomics, 14, 859.
https://doi.org/10.1186/1471-2164-14-859
[27]  Angot, A., Peeters, N., Lechner, E., et al. (2006) Ralstonia solanacearum Requires F-Box-Like Domain-Containing Type III Effectors to Promote Disease on Several Host Plants. Proceedings of the National Academy of Sciences of the United States of America, 103, 14620-14625.
https://doi.org/10.1073/pnas.0509393103
[28]  Turner, M., Jauneau, A., Genin, S., et al. (2009) Dissection of Bacterial Wilt on Medicago truncatula Revealed Two Type III Secretion System Effectors Acting on Root Infection Process and Disease Development. Plant Physiology, 150, 1713-1722.
https://doi.org/10.1104/pp.109.141523
[29]  Chen, L., Shirota, M., Zhang, Y., et al. (2014) Involvement of HLK Effectors in Ralstonia solanacearum Disease Development in Tomato. Journal of General Plant Pathology, 80, 79-84.
https://doi.org/10.1007/s10327-013-0490-2
[30]  Remigi, P., Anisimova, M., Guidot, A., et al. (2011) Functional Diversification of the GALA Type III Effector Family Contributes to Ralstonia solanacearum Adaptation on Different Plant Hosts. New Phytologist, 192, 976-987.
https://doi.org/10.1111/j.1469-8137.2011.03854.x
[31]  Solé, M., Popa, C., Mith, O., et al. (2012) The Awr Gene Family Encodes a Novel Class of Ralstonia solanacearum Type III Effectors Displaying Virulence and Avirulence Activities. Molecular Plant-Microbe Interactions, 25, 941-953.
https://doi.org/10.1094/MPMI-12-11-0321
[32]  Lonjon, F., Peeters, N., Genin, S., et al. (2018) In Vitro and In Vivo Secretion/Translocation Assays to Identify Novel Ralstonia solanacearum Type 3 Effectors. Methods in Molecular Biology (Clifton, N.J.), 1734, 209-222.
https://doi.org/10.1007/978-1-4939-7604-1_17
[33]  Cui, H., Tsuda, K., Parker, J.E. (2015) Effector-Triggered Immunity: From Pathogen Perception to Robust Defense. Annual Review of Plant Biology, 66, 487-511.
https://doi.org/10.1146/annurev-arplant-050213-040012
[34]  Feys, B.J. and Parker, J.E. (2000) Interplay of Signaling Pathways in Plant Disease Resistance. Trends in Genetics, 16, 449-455.
https://doi.org/10.1016/S0168-9525(00)02107-7
[35]  Nakano, M. and Mukaihara, T. (2019) The Type III Effector RipB from Ralstonia solanacearum RS1000 Acts as a Major Avirulence Factor in Nicotiana benthamiana and Other Nicotiana Species. Molecular Plant Pathology, 20, 1237-1251.
https://doi.org/10.1111/mpp.12824
[36]  Aslam, M.N., Mukhtar, T., Hussain, M.A., et al. (2017) Assessment of Resistance to Bacterial Wilt Incited by Ralstonia solanacearum in Tomato Germplasm. Journal of Plant Diseases and Protection, 124, 585-590.
https://doi.org/10.1007/s41348-017-0100-1
[37]  乐素菊, 梁承愈, 吴定华. 番茄青枯病抗, 感品种(系)结构性差异初探[J]. 华南农业大学学报, 1996, 17(2): 50-53.
[38]  宋从凤, 施仲美. 桉树对青枯病抗性与多酚氧化酶及其同工酶关系的研究[J]. 广西林业科学, 2000, 29(4): 165-168.
[39]  Wang, B., He, T., Zheng, X., et al. (2021) Proteomic Analysis of Potato Responding to the Invasion of Ralstonia solanacearum UW551 and Its Type III Secretion System Mutant. Molecular Plant-Microbe Interactions, 34, 144.
https://doi.org/10.1094/MPMI-06-20-0144-R
[40]  Morais, T.P., Zaini, P.A., Chakraborty, S., et al. (2019) The Plant-Based Chimeric Antimicrobial Protein SlP14a-PPC20 Protects Tomato against Bacterial Wilt Disease Caused by Ralstonia solanacearum. Plant Science, 280, 197-205.
https://doi.org/10.1016/j.plantsci.2018.11.017
[41]  Zhuo, T., Wang, X., Chen, Z., et al. (2020) The Ralstonia solanacearum Effector RipI Induces a Defence Reaction by Interacting with the bHLH93 Transcription Factor in Nicotiana benthamiana. Molecular Plant Pathology, 21, 999-1004.
https://doi.org/10.1111/mpp.12937
[42]  Wang, L., Cai, K., Chen, Y., et al. (2013) Silicon-Mediated Tomato Resistance against Ralstonia solanacearum Is Associated with Modification of Soil Microbial Community Structure and Activity. Biological Trace Element Research, 152, 275-283.
https://doi.org/10.1007/s12011-013-9611-1
[43]  谢秀明, 沈虹, 孙锦. 番茄青枯病综合防治研究进展[J]. 中国果菜, 2018, 38(11): 69-73.
[44]  段志赞, 李子蒙. 腾冲县烤烟青枯病的发生原因及防控措施[J]. 现代农业科技, 2015(14): 137-138.
[45]  蒋岁寒, 刘艳霞, 孟琳, 等. 生物有机肥对烟草青枯病的田间防效及根际土壤微生物的影响[J]. 南京农业大学学报, 2016, 39(5): 784-790.
[46]  Huet, G. (2014) Breeding for Resistances to Ralstonia solanacearum. Frontiers in Plant Science, 5, 715.
https://doi.org/10.3389/fpls.2014.00715
[47]  Caldwell, D., Kim, B.S. and Iyer-Pascuzzi, A.S. (2017) Ralstonia solanacearum Differentially Colonizes Roots of Resistant and Susceptible Tomato Plants. Phytopathology, 107, 528-536.
https://doi.org/10.1094/PHYTO-09-16-0353-R
[48]  彭文舫, 吕建伟, 任小平, 等. 花生抗青枯病相关基因的差异表达[J]. 遗传, 2011, 33(4): 389-396.
[49]  Veillet, F., Durand, M., Kroj, T., et al. (2020) Precision Breeding Made Real with Crispr: Illustration through Genetic Resistance to Pathogens. Plant Communications, 1, Article ID: 100102.
https://doi.org/10.1016/j.xplc.2020.100102

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133