|
Material Sciences 2021
富铋型溴氧铋的制备及其光催化性能研究
|
Abstract:
采用溶剂热法和煅烧法分别制备了Bi3O4Br、Bi12O17Br2和Bi24O31Br10三种不同的富铋型溴氧铋材料。利用X射线粉末衍射(XRD)和扫描电子显微镜(SEM)对不同材料的物相组成与形貌进行了表征。在模拟太阳光下分别测试了三种富铋型溴氧铋材料的光催化苯甲醇选择性氧化性能。其中,Bi24O31Br10样品具有最佳的光催化性能,光照2小时后,苯甲醇的转化率为22.3%,苯甲醛的选择性可达100%。通过捕获剂实验、电子顺磁共振波谱(EPR)和紫外–可见漫反射光谱(DRS)对不同材料表现出不同光催化活性的原因进行了分析。结果表明,三种不同的富铋型溴氧铋材料光催化氧化苯甲醇的主要活性物种均为光生空穴(h+)和超氧自由基(·O2-)。Bi24O31Br10具有最佳光催化活性可能归因于Bi24O31Br10产生·O2-的能力强于Bi3O4Br和Bi12O17Br2。此外,Bi24O31Br10的价带电位更正,光生h+的氧化性更强,有利于苯甲醇的氧化。
Three kinds of bismuth-richbismuth oxybromide materials (Bi3O4Br, Bi12O17Br2 and Bi24O31Br10) were prepared by solvothermal and calcination method, respectively. The phase compositions and morphologies of different materials were characterized by powder X-ray diffraction (XRD) and scanning electron microscope (SEM). The photocatalytic performance of different materials for the selective oxidation of benzyl alcohol was evaluated under simulated sunlight irradiation. Among them, Bi24O31Br10 sample displayed the best photocatalytic performance. After 2 hours of illumination, the conversion of benzyl alcohol was 22.3%, and the selectivity of benzaldehyde reached 100%. Subsequently, the capturing agent experiment, electron paramagnetic resonance spectra (EPR) and ultraviolet-visible diffuse reflectance spectra (DRS) were used to analyze the reasons. The results showed that the main active species were photogenerated holes (h+) and su-peroxide radicals (·O2-) for the photocatalytic oxidation of benzyl alcohol over the three materials. Bi24O31Br10 exhibited the best photocatalytic performance might be attributed to the ·O2- production ability of Bi24O31Br10 which was stronger than that of Bi3O4Br and Bi12O17Br2. In addition, the valence band potential of Bi24O31Br10 was more positive than that of Bi3O4Br and Bi12O17Br2 leading to the stronger oxidation ability of photogenerated h+, which was beneficial for the oxidation
[1] | Long, J., Xie, X., Xu, J., Gu, Q., Chen, L. and Wang, X. (2012) Nitrogen-Doped Graphene Nanosheets as Metal-Free Catalysts for Aerobic Selective Oxidation of Benzylic Alcohols. ACS Catalysis, 2, 622-631.
https://doi.org/10.1021/cs3000396 |
[2] | Xiao, C., Zhang, L., Hao, H. and Wang, W. (2019) High Selective Oxi-dation of Benzyl Alcohol to Benzylaldehyde and Benzoic Acid with Surface Oxygen Vacancies on W18O9/Holey Ul-trathin g-C3N4 Nanosheets. ACS Sustainable Chemistry & Engineering, 7, 7268-7276. https://doi.org/10.1021/acssuschemeng.9b00299 |
[3] | Long, B., Ding, Z. and Wang, X. (2013) Carbon Nitride for the Selective Oxidation of Aromatic Alcohols in Water under Visible Light. ChemSusChem, 6, 2074-2078. https://doi.org/10.1002/cssc.201300360 |
[4] | Cerdan, K., Ouyang, W., Colmenares, J.C., Mu?oz-Batista, M.J., Luque, R. and Balu, A.M. (2019) Facile Mechanochemical Modification of g-C3N4 for Selective Photo-Oxidation of Benzyl Alcohol. Chemical Engineering Science, 194, 78-84. https://doi.org/10.1016/j.ces.2018.04.001 |
[5] | Ye, X., Chen, Y., Ling, C., Zhang, J., Meng, S., Fu, X., et al. (2018) Chalcogenide Photocatalysts for Selective Oxidation of Aromatic Alcohols to Aldehydes Using O2 and Visible Light: A Case Study of CdIn2S4, CdS and In2S3. Chemical Engineering Journal, 348, 966-977. https://doi.org/10.1016/j.cej.2018.05.035 |
[6] | 李培贤, 赵慧, 闫旭燕, 杨雪, 李静君, 高水英. CdS@MoS2异质结催化剂可见光光催化产氢和选择性氧化苯甲醇的耦合反应[J]. 中国科学: 材料科学(英文), 2020, 63(11): 2239-2250. https://doi.org/10.1007/s40843-020-1448-2 |
[7] | 刘娟娟, 邹世辉, 吴嘉超, Hisayoshi, K., 赵红挺, 范杰. Pt/ZnO 在室温水相无碱条件下绿色催化苯甲醇选择性氧化[J]. 催化学报, 2018, 39(6): 1081-1089. https://doi.org/10.1016/S1872-2067(18)63022-0 |
[8] | Cui, Z., Zhou, H., Wang, G., Zhang, Y., Zhang, H. and Zhao, H. (2019) Enhancement of the Visible-Light Photocatalytic Activity of CeO2 by Chemisorbed Oxygen in the Selective Oxidation of Benzyl Alcohol. New Journal of Chemistry, 43, 7355-7362. https://doi.org/10.1039/C9NJ01098J |
[9] | Jing, K., Ma, W., Ren, Y., Xiong, J., Guo, B., Song, Y., et al. (2019) Hierarchical Bi2MoO6 Spheres in Situ Assembled by Monolayer Nanosheets Toward Photocatalytic Selective Oxidation of Benzyl Alcohol. Applied Catalysis B: Environmental, 243, 10-18. https://doi.org/10.1016/j.apcatb.2018.10.027 |
[10] | Bisht, N.S., Pancholi, D., Sahoo, N.G., Melkani, A.B., Mehta, S.P.S. and Dandapat, A. (2019) Effect of Ag-Fe-Cu Tri-Metal Loading in Bismuth Oxybromide to Develop a Novel Nanocomposite for the Sunlight Driven Photocatalytic Oxidation of Alcohols. Catalysis Science & Technology, 9, 3923-3932. https://doi.org/10.1039/C9CY00954J |
[11] | Dai, Y., Ren, P., Li, Y., Lv, D., Shen, Y., Li, Y., et al. (2019) Solid Base Bi24O31Br10(OH)δ with Active Lattice Oxygen for the Efficient Photo-Oxidation of Primary Alcohols to Aldehydes. Angewandte Chemie-International Edition, 58, 6265-6270. https://doi.org/10.1002/anie.201900773 |
[12] | Chen, L., Tang, J., Song, L.-N., Chen, P., He, J., Au, C.T., et al. (2019) Heterogeneous Photocatalysis for Selective Oxidation of Alcohols and Hydrocarbons. Applied Catalysis B: En-vironmental, 242, 379-388.
https://doi.org/10.1016/j.apcatb.2018.10.025 |
[13] | Xiao, X., Liu, C., Hu, R., Zuo, X., Nan, J., Li, L., et al. (2012) Oxygen-Rich Bismuth Oxyhalides: Generalized One-Pot Synthesis, Band Structures and Visible-Light Photocatalytic Properties. Journal of Materials Chemistry, 22, 22840-22843. https://doi.org/10.1039/c2jm33556e |
[14] | Mao, D., Yuan, J., Qu, X., Sun, C., Yang, S. and He, H. (2019) Size Tunable Bi3O4Br Hierarchical Hollow Spheres Assembled with {001}-Facets Exposed Nanosheets for Robust Photocatalysis Against Phenolic Pollutants. Journal of Catalysis, 369, 209-221. https://doi.org/10.1016/j.jcat.2018.11.016 |
[15] | Zhao, W., Yang, C., Huang, J., Jin, X., Deng, Y., Wang, L., et al. (2020) Selective Aerobic Oxidation of Sulfides to Sulfoxides in Water Under Blue Light Irradiation Over Bi4O5Br2. Green Chemistry, 22, 4884-4889.
https://doi.org/10.1039/D0GC01930E |
[16] | Li, P., Zhou, Z., Wang, Q., Guo, M., Chen, S., Low, J., et al. (2020) Visible-Light-Driven Nitrogen Fixation Catalyzed by Bi5O7Br Nanostructures: Enhanced Performance by Oxygen Va-cancies. Journal of the American Chemical Society, 142, 12430-12439. https://doi.org/10.1021/jacs.0c05097 |
[17] | Li, R., Xie, F., Liu, J., Zhang, C., Zhang, X. and Fan, C. (2019) Room-Temperature Hydrolysis Fabrication of BiOBr/Bi12O17Br2 Z-Scheme Photocatalyst with Enhanced Resorcinol Degradation and NO Removal Activity. Chemosphere, 235, 767-775. https://doi.org/10.1016/j.chemosphere.2019.06.231 |
[18] | Zhao, C., Wang, Z., Li, X., Yi, X., Chu, H. and Wang, C. (2020) Facile Fabrication of BUC-21/Bi24O31Br10 Composites for Enhanced Photocatalytic Cr(VI) Reduction under White Light. Chemical Engineering Journal, 389, Article ID: 123431. https://doi.org/10.1016/j.cej.2019.123431 |
[19] | Nosaka, Y. and Nosaka, A.Y. (2017) Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews, 117, 11302-11336. https://doi.org/10.1021/acs.chemrev.7b00161 |
[20] | Zou, Y., Shi, J.-W., Sun, L., Ma, D., Mao, S., Lv, Y., et al. (2019) Energy-Band-Controlled ZnxCd1-xIn2S4 Solid Solution Coupled with g-C3N4 Nanosheets as 2D/2D Hetero-structure toward Efficient Photocatalytic H2 Evolution. Chemical Engineering Journal, 378, Article ID: 122192. https://doi.org/10.1016/j.cej.2019.122192 |
[21] | Xiao, Y., Feng, C., Fu, J., Wang, F., Li, C., Kunzelmann, V.F., et al. (2020) Band Structure Engineering and Defect Control of Ta3N5 for Efficient Photoelectrochemical Water Oxidation. Nature Catalysis, 3, 932-940.
https://doi.org/10.1038/s41929-020-00522-9 |