全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于原儿茶醛的有机转化功能涂层的制备及研究
Preparation and Research of Functional Coating of Organic Transformation Based on Protocatechualdehyde

DOI: 10.12677/MS.2021.115062, PP. 536-544

Keywords: 316L不锈钢,功能改性,原儿茶醛,有机转化涂层,表面功能化
316L Stainless Steel
, Functional Modification, Protocatechualdehyde, Organic Transformation Coating, Surface Functionalization

Full-Text   Cite this paper   Add to My Lib

Abstract:

316L不锈钢因其优异的化学稳定性和机械性能在介入治疗领域有着广泛的应用,但其生物相容性不能够满足长期治疗的要求,因此往往需要对其表面进行功能改性。本研究通过原儿茶醛(DBA)和三(2-氨基乙基)胺(TAEA)之间的共聚反应,在316L不锈钢表面成功构建DBTA有机转化涂层,并系统研究了涂层的化学结构和生物学性能。傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)和官能团定量检测结果共同证明了DBTA涂层成功制备,且表面官能团密度可调控。血小板粘附结果表明DBTA涂层的血液相容性有待提升,但细胞相容性良好。该结构特点为后续特定功能分子的固定以实现表面功能化提供了很好的平台。
Due to excellent chemical stability and mechanical properties, 316L stainless steel has been widely used in the field of interventional therapy. However, the biocompatibility of 316L stainless steel could not meet the requirements of long-term treatment. Therefore, it is necessary to carry out surface functional modification. In this study, DBTA organic transformation coating was successfully constructed on 316L stainless steel surface by the copolymerization reaction between protocatechualdehyde (DBA) and tri (2-aminoethyl) amine (TAEA). Besides, the chemical structure and biological properties of the coating were systematically studied. A series of results including Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and quantitative determination of functional groups proved that the coating was successfully prepared and the density of surface functional group could be adjusted. The results of platelet adhesion showed that the blood compatibility of DBTA coating needed to be improved. Nevertheless, the cell compatibility was good. This structure feature provides a good platform for the subsequent fixation of specific functional molecules to realize the surface functionalization.

References

[1]  吴迪, 张庆军. 中国冠心病诊疗现状和进展[J]. 中国研究型医院, 2020, 7(1): 71-75.
[2]  Garcia De Tena, J. (2005) Inflammation, Atherosclerosis, and Coronary Artery Disease. The New England Journal of Medicine, 353, 429-430.
https://doi.org/10.1056/NEJM200507283530425
[3]  Koster, R., Vieluf, D., Kiehn, M., et al. (2000) Nickel and Molybdenum Contact Allergies in Patients with Coronary In-Stent Restenosis. The Lancet, 356, 1895-1897.
https://doi.org/10.1016/S0140-6736(00)03262-1
[4]  Lee, H., Dellatore, S.M., Miller, W.M., et al. (2007) Mus-sel-Inspired Surface Chemistry for Multifunctional Coatings. Science, 318, 426-430.
https://doi.org/10.1126/science.1147241
[5]  Luo, R., Tang, L., Xie, L., et al. (2016) Multifunctional Mus-sel-Inspired Copolymerized Epigallocatechin Gallate (EGCG)/Arginine Coating: The Potential as an Ad-Layer for Vascular Materials. Regenerative Biomaterials, 3, 247-255.
https://doi.org/10.1093/rb/rbw027
[6]  Luo, R., Tang, L., Zhong, S., et al. (2013) In Vitro Investigation of Enhanced Hemocompatibility and Endothelial Cell Proliferation As-sociated with Quinone-Rich Polydopamine Coating. ACS Applied Materials & Interfaces, 5, 1704-1714.
https://doi.org/10.1021/am3027635
[7]  Yang, Y., Qi, P., Ding, Y., et al. (2015) A Biocompatible and Functional Adhesive Amine-Rich Coating Based on Dopamine Polymerization. Journal of Materials Chemistry B, 3, 72-81.
https://doi.org/10.1039/C4TB01236D
[8]  石琳, 吴禅群, 杨毓麟. 原儿茶醛对血小板聚集性和血小板内cAMP含量的影响[J]. 苏州医学院学报, 1982(2): 1-2.
[9]  张翠英, 郭丽丽, 王阶. 原儿茶醛的药理研究进展[J]. 中国实验方剂学杂志, 2013, 19(23): 1-2.
[10]  Wang, Z., Yang, H.-C., He, F., et al. (2019) Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter, 1, 115-155.
https://doi.org/10.1016/j.matt.2019.05.002
[11]  Noel, S., Liberelle, B., Robitaille, L., et al. (2011) Quantification of Primary Amine Groups Available for Subsequent Biofunctionalization of Polymer Surfaces. Bioconjugate Chemistry, 22, 1690-1699.
https://doi.org/10.1021/bc200259c
[12]  Shin, Y.M., Lee, Y.B. and Shin, H. (2011) Time-Dependent Mussel-Inspired Functionalization of Poly(L-lactide-co- epsilon-caprolactone) Substrates for Tunable Cell Behaviors. Colloids and Surfaces B Biointerfaces, 87, 79-87.
https://doi.org/10.1016/j.colsurfb.2011.05.004
[13]  Goodman, S.L., Grasel, T.G., Cooper, S.L., et al. (1989) Platelet Shape Change and Cytoskeletal Reorganization on Polyurethaneureas. Journal of Biomedical Materials Research, 23, 105-123.
https://doi.org/10.1002/jbm.820230109
[14]  Amiji, M.M. (1998) Platelet Adhesion and Activation on an Amphoteric Chitosan Derivative Bearing Sulfonate Groups. Colloids and Surfaces B Biointerfaces, 10, 263-271.
https://doi.org/10.1016/S0927-7765(98)00005-8
[15]  Yang, Z.-L., Zhou, S., Lu, L., et al. (2012) Construction and Hemocompatibility Study of Highly Bioactive Heparin-Functionalized Surface. Journal of Biomedical Materials Research Part A, 100, 3124-3133.
https://doi.org/10.1002/jbm.a.34247
[16]  陈思. 类聚多巴胺涂层——没食子酸/己二胺交联薄膜的制备与性能研究[D]: [博士学位论文]. 成都: 西南交通大学, 2015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133