|
Botanical Research 2021
硬叶柳叶片形态在海拔梯度上的演变
|
Abstract:
本文以那曲嘉黎县9个海拔梯度上的硬叶柳为研究对象,采用叶面积仪测量叶片的长度、宽度、厚度,并计算叶片面积和叶形指数。在4000 m~4800 m海拔梯度上,硬叶柳叶片长度、宽度、厚度和叶面积的演变均呈现二次方程。随着海拔的升高,叶片的长度、宽度、厚度以及叶面积起先均有下降趋势;当海拔达到4500 m时叶片各参数到达最低值,然后随海拔的上升而上升。
In this paper, Salix sinensis on nine elevation gradients in Jiali County of Naqu was taken as the research object. The length, width and thickness of the leaves were measured with calipers, and the leaf area and leaf shape index were calculated. On the 4000 m~4800 m elevation gradient, the leaf length, width, thickness and leaf area of C. satifolia showed a quadratic equation. With the increase of altitude, leaf length, leaf width, leaf thickness and leaf area initially showed a downward trend. When the altitude reached 4500 m, the leaf parameters reached the lowest value, and then increased with the increase of altitude.
[1] | 宋璐璐, 樊江文, 吴绍洪. 植物叶片性状沿海拔梯度变化研究进展[J]. 地理科学进展, 2011, 30(11): 1431-1439. |
[2] | 贺金生, 陈伟烈, 王勋陵. 高山栎叶的形态结构及其与生态环境的关系[J]. 植物生态学, 1994, 18(3): 219-222. |
[3] | 刘梦颖, 刘光立, 康永祥, 张硕, 吴云, 王玉. 高山植物全缘叶绿绒蒿叶片形态及解剖结构对海拔的响应[J]. 生态学杂志, 2018, 37(1): 35-42. |
[4] | 郭学民, 刘建珍, 翟江涛, 等. 16个品种桃叶片解剖结构与树干抗寒性的关系[J]. 林业科学, 2015, 51(8): 33-43. |
[5] | K?rner, C. (1999) Alpine Plant Life. Functional Plant Ecology of High Mountain Ecosystems. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-3-642-98018-3_1 |
[6] | Royer, D.L., McElwain, J.C., Adams, J.M., et al. (2008) Sensitivity of Leaf Size and Shape to Climate within Acer rubrum and Quercus kelloggii. New Phytologist, 179, 808-817. https://doi.org/10.1111/j.1469-8137.2008.02496.x |
[7] | 王勋陵, 王静. 植物形态结构与环境[M]. 兰州: 兰州大学出版社, 1989: 105-148. |
[8] | McDonald, P.G., Fonseca, C.R., McCoverton, J., et al. (2003) Leaf-Size Divergence along Rainfall and Soil-Nutrient Gradients: Is the Method of Size Reduction Common among Lades? Functional Ecology, 17, 50-57.
https://doi.org/10.1046/j.1365-2435.2003.00698.x |
[9] | Cavender-Bares, J. and Holbrook, N.M. (2001) Hydraulic Properties and Freezing-Induced Xylem Cavitation in Evergreen and Deciduous Oaks with Contrasting Habitats. Plant, Cell and Environment, 24, 1243-1256.
https://doi.org/10.1046/j.1365-3040.2001.00797.x |
[10] | Mcculloh, K.A. and Sperry, J.S. (2005) Patterns in Hydraulic Architecture and Their Implications for Transport Efficiency. Tree Physiology, 25, 257-267. https://doi.org/10.1093/treephys/25.3.257 |
[11] | Westoby, M., Falster, D.S., Moles, A.T., et al. (2002) Plant Ecological Strategies: Some Leading Dimensions of Variation between Species. Annual Review of Ecology and Systematics, 33, 125-159.
https://doi.org/10.1146/annurev.ecolsys.33.010802.150452 |
[12] | Wright, I.J., Reich, P.B., Westoby, M., et al. (2004) The Worldwide Leaf Economics Spectrum. Nature, 428, 821-827.
https://doi.org/10.1038/nature02403 |
[13] | 郭文文, 卓么草, 周尧治. 西藏高原硬叶柳叶片结构对寒旱环境的适应机制[J]. 西北植物学报, 2019, 39(5): 784-790. |
[14] | 卡特. 植物解剖学[M]. 李正理, 译. 北京: 科学出版社, 1976. |
[15] | 田苗. 叶片形态和解剖结构属性的纬度格局及影响因素[D]: [硕士学位论文]. 北京: 北京林业大学, 2016. |