|
基于深度学习的学生课堂状态检测算法与应用
|
Abstract:
课堂教学评价是教学管理的重要组成部分之一,但依赖于督导教师完成该项工作的管理形式难以全面评价并反馈学生课堂学习状态。同时,我国高校的课堂监控视频数据被大量搁置未发挥作用。基于此,本文将传统教学管理与人工智能有机结合,提出学生课堂学习状态智能检测算法,采用K-means++聚类算法对目标候选框的个数和宽高比进行聚类分析,搭建双YOLO网络模型对课堂监控视频中学生的课堂行为进行分析,实时、精准地反馈学生的课堂学习状态,并对结果进行评分分级辅助督导教师进行课堂教学评价任务以提高教学管理效率。经过测试实验,本章提出的双YOLO网络模型的准确率为86.62%,且每帧教室监控图像的计算时间0.2 s。
Classroom teaching evaluation is one of the important parts of teaching management, but it is diffi-cult to comprehensively evaluate and feedback students’ classroom learning status in the manage-ment form that relies on the supervisor to complete the work. At the same time, the classroom sur-veillance video data of colleges and universities in China has been largely shelved and has not played a role. Based on this, this article will combine traditional teaching management and artificial intelligence, students’ classroom learning intelligent detection algorithm is put forward, by the method of K-means++ clustering algorithm, the number and the aspect ratio of target candidate box for clustering analysis, build the double YOLO network model for monitoring video classroom of students classroom behavior analysis, real-time, accurate feedback on students’ classroom learning state, and the results are teachers’ classroom teaching evaluation rating auxiliary supervision task to improve the efficiency of teaching management. After testing and experiments, the accuracy rate of the TWO-STAGE YOLO network model proposed in this chapter is 86.62%, and the calculation time of each frame of classroom monitoring image is 0.2 s.
[1] | 王莉芬, 杨勇, 朱惠延. 地方高校教学督导助推青年教师教学能力提升的对策思考[J]. 高教论坛, 2019(11): 33-36. |
[2] | Girshick, R. (2015) Fast R-CNN. IEEE International Conference on Computer Vision (ICCV), Santiago, 7-13 December 2015, 1440-1448. https://doi.org/10.1109/ICCV.2015.169 |
[3] | Ren, S., He, K., Girshick, R., et al. (2017) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031 |
[4] | Liu, W., Anguelov, D., Erhan, D., et al. (2016) SSD: Single Shot Multibox Detector. International Conference on Computer Vision (ICCV), arXiv:1512.02325, 21-37. https://doi.org/10.1007/978-3-319-46448-0_2 |
[5] | Redmon, J., Divvala, S., Girshick, R., et al. (2016) You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 779-788.
https://doi.org/10.1109/CVPR.2016.91 |
[6] | Redmon, J. and Farhadi, A. (2017) YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 6517-6525. https://doi.org/10.1109/CVPR.2017.690 |
[7] | Edmon, J. and Farhadi, A. (2018) YOLOv3: An Incremental Improvement. Computer Vision and Pattern Recognition, arXiv preprint arXiv: 1804.02767. |
[8] | 吴松伟. 基于人脸识别技术的智能视频监控系统设计与实现[J]. 计算机时代, 2019(11): 62-66. |
[9] | 刘飞鹏, 沈希忠. 图像处理技术在车牌号识别领域中的算法改进[J]. 电视技术, 2016, 40(12): 28-33. |
[10] | 闫敬文, 樊秋月. 基于视频图像处理的人数统计方法[J]. 汕头大学学报(自然科学版), 2008, 23(2): 69-73. |
[11] | Lukas, S., Mitra, A.R., Desanti, R.I. and Krisnadi, D. (2016) Student Attendance System in Classroom Using Face Recognition Technique. 2016 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, 19-21 October 2016, 1032-1035. https://doi.org/10.1109/ICTC.2016.7763360 |