全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biophysics  2021 

基于机器学习的肺结节良恶性分类研究进展
Advances in the Classification of Benign and Malignant Pulmonary Nodules Based on Machine Learning

DOI: 10.12677/BIPHY.2021.92006, PP. 43-56

Keywords: 机器学习,深度学习,计算机辅助诊断,肺结节,金标准,结节分类,Machine Learning, Deep Learning, Computer Aided Diagnosis, Pulmonary Nodule, Golden Standard, Nodule Classification

Full-Text   Cite this paper   Add to My Lib

Abstract:

简要分析了计算机断层扫描(computed tomography, CT)与其他肺结节成像方式的优缺点。随后介绍了目前研究者们运用最多的两个肺部计算机断层扫描影像数据库以及其文件组成。最后从传统人工特征、深度学习、数据集的选择以及多分类这四个角度出发,重点介绍了肺结节良恶性分类的具体应用及进展,并加以讨论和展望。
The advantages and disadvantages of computed tomography (CT) and other imaging methods of pulmonary nodules are analyzed. Then, the two CT image databases and their file composition that researchers use most at present are introduced. Finally, from the four perspectives of traditional artificial features, deep learning, database selection and multi-classification, the specific application and progress of benign and malignant classification of pulmonary nodules are mainly discussed and prospected.

References

[1]  Siegel, R.L., Miller, K.D. and Jemal, A. (2020) Cancer Statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 7-30.
https://doi.org/10.3322/caac.21590
[2]  World Health Organization (2020) World Health Statistics 2020. World Health Organization, Geneva.
[3]  Armato III, S.G., Roberts, R.Y., Meyer, C.R., et al. (2007) The Lung Image Database Consortium (LIDC): Ensuring the Integrity of Expert-Defined “Truth”. Academic Radiology, 14, 1455-1463.
https://doi.org/10.1016/j.acra.2007.08.006
[4]  刘颖, 赖敏. 早期肺癌影像学诊断研究进展[J]. 影像研究与医学应用, 2019, 3(1): 10-11.
[5]  贾群玲. CT与MRI诊断孤立性肺结节良恶性的准确性分析[J]. 中国CT与MRI杂志, 2016, 14(10): 42-45.
[6]  Patel, V.K., Naik, S.K., Naidich, D.P., et al. (2013) A Practical Algorithmic Approach to the Diagnosis and Management of Solitary Pulmonary Nodules. Chest, 143, 840-846.
https://doi.org/10.1378/chest.12-1487
[7]  National Lung Screening Trial Research Team (2011) The National Lung Screening Trial: Overview and Study Design. Radiology, 258, 243-253.
https://doi.org/10.1148/radiol.10091808
[8]  Naidich, D.P., Marshall, C.H., Gribbin, C., et al. (1990) Low-Dose CT of the Lungs: Preliminary Observations. Radiology, 175, 729-731.
https://doi.org/10.1148/radiology.175.3.2343122
[9]  Armato III, S.G., McLennan, G., Bidaut, L., et al. (2011) The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans. Medical Physics, 38, 915-931.
https://doi.org/10.1118/1.3528204
[10]  Setio, A.A.A., Traverso, A., De Bel, T., et al. (2017) Validation, Comparison, and Combination of Algorithms for Automatic Detection of Pulmonary Nodules in Computed Tomography Images: The LUNA16 Challenge. Medical Image Analysis, 42, 1-13.
https://doi.org/10.1016/j.media.2017.06.015
[11]  王婧璇, 林岚, 赵思远, 等. 基于深度学习的肺结节计算机断层扫描影像检测与分类的研究进展[J]. 生物医学工程学杂志, 2019, 36(4): 670-676.
[12]  Way, T.W., Sahiner, B., Chan, H.-P., et al. (2009) Computer-Aided Diagnosis of Pulmonary Nodules on CT Scans: Improvement of Classification Performance with Nodule Surface Features. Medical Physics, 36, 3086-3098.
https://doi.org/10.1118/1.3140589
[13]  Anirudh, R., Thiagarajan, J.J., Bremer, T. and Kim, H. (2016) Lung Nodule Detection Using 3D Convolutional Neural Networks Trained on Weakly Labeled Data. Medical Imaging 2016: Comput-er-Aided Diagnosis. International Society for Optics and Photonics, 9785, 978532.
https://doi.org/10.1117/12.2214876
[14]  Liu, Y., Balagurunathan, Y., Atwater, T., et al. (2017) Radiological Image Traits Predictive of Cancer Status in Pulmonary Nodules. Clinical Cancer Research, 23, 1442-1449.
https://doi.org/10.1158/1078-0432.CCR-15-3102
[15]  Hawkins, S., Wang, H., Liu, Y., et al. (2016) Predicting Malig-nant Nodules from Screening CT Scans. Journal of Thoracic Oncology, 11, 2120-2128.
https://doi.org/10.1016/j.jtho.2016.07.002
[16]  Dilger, S.K., Uthoff, J., Judisch, A., et al. (2015) Improved Pulmonary Nodule Classification Utilizing Quantitative Lung Parenchyma Features. Journal of Medical Imaging, 2, 041004.
https://doi.org/10.1117/1.JMI.2.4.041004
[17]  Aerts, H.J.W.L., Velazquez, E.R., Leijenaar, R.T.H., et al. (2014) De-coding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nature Communications, 5, Article No. 4006.
https://doi.org/10.1038/ncomms5006
[18]  Wang, J., Liu, X., Dong, D., et al. (2016) Prediction of Malignant and Benign of Lung Tumor Using a Quantitative Radiomic Method. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, 16-20 August 2016, 1272-1275.
https://doi.org/10.1109/EMBC.2016.7590938
[19]  Chen, S., Qin, J., Ji, X., et al. (2017) Automatic Scoring of Multiple Semantic Attributes with Multi-Task Feature Leverage: A Study on Pulmonary Nodules in CT Images. IEEE Transactions on Medical Imaging, 36, 802-814.
https://doi.org/10.1109/TMI.2016.2629462
[20]  杨佳玲, 赵涓涓, 强彦, 等. 基于深度信念网络的肺结节良恶性分类[J]. 科学技术与工程, 2016, 16(32): 69-74.
[21]  LeCun, Y., Boser, B., Denker, J.S., et al. (1989) Backpropagation Ap-plied to Handwritten Zip Code Recognition. Neural Computation, 1, 541-551.
https://doi.org/10.1162/neco.1989.1.4.541
[22]  LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998) Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86, 2278-2324.
https://doi.org/10.1109/5.726791
[23]  Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017) Imagenet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60, 84-90.
https://doi.org/10.1145/3065386
[24]  Donahue, J., Anne Hendricks, L., Guadarrama, S., et al. (2015) Long-Term Re-current Convolutional Networks for Visual Recognition and Description. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 7-12 June 2015, 2625-2634.
https://doi.org/10.1109/CVPR.2015.7298878
[25]  He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90
[26]  Szegedy, C., Liu, W., Jia, Y., et al. (2015) Going Deeper with Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 7-12 June 2015, 1-9.
https://doi.org/10.1109/CVPR.2015.7298594
[27]  Hua, K.L., Hsu, C.H., Hidayati, S.C., et al. (2015) Computer-Aided Classification of Lung Nodules on Computed Tomography Images via Deep Learning Technique. OncoTargets and Therapy, 8, 2015-2022.
https://doi.org/10.2147/OTT.S80733
[28]  Mastouri, R., Khlifa, N., Neji, H. and Hantous-Zannad, S. (2020) A Bilinear Convolutional Neural Network for Lung Nodules Classification on CT Images. International Journal of Computer Assisted Radiology and Surgery, 16, 91-101.
https://doi.org/10.1007/s11548-020-02283-z
[29]  吴世洋, 任劲松, 张冉, 等. 基于卷积神经网络的肺结节良恶性分类[J]. 中国医学工程, 2020, 28(1): 1-3.
[30]  Shen, W., Zhou, M., Yang, F., et al. (2015) Multi-Scale Convolutional Neural Networks for Lung Nodule Classification. In: International Conference on Information Processing in Medical Imaging, Springer, Cham, 588-599.
https://doi.org/10.1007/978-3-319-19992-4_46
[31]  Liu, S., Xie, Y., Jirapatnakul, A. and Reeves, A.P. (2017) Pulmo-nary Nodule Classification in Lung Cancer Screening with Three-Dimensional Convolutional Neural Networks. Journal of Medical Imaging, 4, 041308.
https://doi.org/10.1117/1.JMI.4.4.041308
[32]  Ciompi, F., Chung, K., Van Riel, S.J., et al. (2017) Towards Automatic Pulmonary Nodule Management in Lung Cancer Screening with Deep Learning. Scientific Reports, 7, Article No. 46479.
https://doi.org/10.1038/srep46878
[33]  Zheng, J., Yang, D., Zhu, Y., et al. (2020) Pulmonary Nodule Risk Classification in Adenocarcinoma from CT Images Using Deep CNN with Scale Transfer Module. IET Image Processing, 14, 1481-1489.
https://doi.org/10.1049/iet-ipr.2019.0248
[34]  Shen, W., Zhou, M., Yang, F., et al. (2017) Multi-Crop Convolutional Neural Networks for Lung Nodule Malignancy Suspiciousness Classification. Pattern Recognition, 61, 663-673.
https://doi.org/10.1016/j.patcog.2016.05.029
[35]  王强修, 李钧, 朱良明. 肺癌诊断与治疗[M]. 北京: 人民军医出版社, 2013.
[36]  刘一璟, 张旭斌, 张建伟, 等. DenseNet-centercrop: 一个用于肺结节分类的卷积网络[J]. 浙江大学学报(理学版), 2020, 47(1): 20-26.
[37]  Kumar, D., Wong, A. and Clausi, D.A. (2015) Lung Nodule Classification Using Deep Features in CT Images. 2015 12th Conference on Computer and Robot Vision, Halifax, 3-5 June 2015, 133-138.
https://doi.org/10.1109/CRV.2015.25
[38]  Kang, G., Liu, K., Hou, B. and Zhang, N. (2017) 3D Multi-View Convolu-tional Neural Networks for Lung Nodule Classification. PLoS ONE, 12, e0188290.
https://doi.org/10.1371/journal.pone.0188290
[39]  Sun, W., Zheng, B. and Qian, W. (2017) Automatic Feature Learning Using Multichannel ROI Based on Deep Structured Algorithms for Computerized Lung Cancer Diagnosis. Computers in Biology and Medicine, 89, 530-539.
https://doi.org/10.1016/j.compbiomed.2017.04.006
[40]  Chen, M., Radford, A., Child, R., et al. (2020) Generative Pre-training from Pixels. Proceedings of the 37th International Conference on Machine Learning, 119, 1691-1703.
[41]  Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. (2020) An Image Is Worth 16×16 Words: Transformers for Image Recognition at Scale. arXiv preprint arXiv:2010.11929.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133