全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Estimation of the Spot Volatility for Diffusion Process

DOI: 10.4236/ojs.2021.112017, PP. 303-318

Keywords: Diffusion Process, Spot Volatility, GM Type Estimation, Asymptotic Property

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we propose a Gasser-Müller type spot volatility estimator (abbreviated as GM type estimator) for diffusion process, which is weighted by integrals, it is different from the kernel spot volatility estimator discussed by Kristensen (2010). Under more general conditions, the asymptotic unbiasedness and the asymptotic normality of the GM type estimator are derived. The simulation results show that the GM type spot volatility estimator has good estimation effect, and its mean square error tends to be less than that of the kernel spot volatility estimator discussed by Kristensen (2010), so it provides a selection method for estimating the spot volatility in high frequency data environment.

References

[1]  Barndorff-Nielsen, O.E. and Shephard, N. (2002) Econometric Analysis of Realized Volatility and Its Use in Estimating Stochastic Volatility Models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 253-280.
https://doi.org/10.1111/1467-9868.00336
[2]  Christensen, K. and Podolski, M. (2005) Asymptotic Theory for Range-Based Estimation of Integrated Variance of a Continuous Semi-Martingale. Technical Reports.
[3]  Li, C., Guo, E. and Bao, M. (2012) A Nonparametric Estimate of Integrated Cross-Volatility. Acta Scientiarum Naturalium Universitatis Sunyatseni, 52, 55-58.
[4]  Zhang, L., Mykland, P.A. and Aït-Sahalia, Y. (2005) A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High-Frequency Data. Journal of the American Statistical Association, 100, 1394-1411.
https://doi.org/10.1198/016214505000000169
[5]  Hansen, P., Large, J.H. and Lunde, A. (2008) Moving Average-Based Estimators of Integrated Variance. Econometric Reviews, 27, 79-111.
https://doi.org/10.1080/07474930701853640
[6]  Li, C.X., Liang, X.L., Jing, B.Y. and Kong, X.B. (2013) The Asymptotics of the Integrated Self-Weighted Cross Volatility Estimator. Journal of Statistical Planning & Inference, 143, 1708-1718.
https://doi.org/10.1016/j.jspi.2013.05.003
[7]  Jing, B., Liu, Z. and Kong, X. (2015) Estimating the Volatility Functionals with Multiple Transactions. Econometric Theory, 33, 331-365.
https://doi.org/10.1017/S0266466615000420
[8]  Li, Y., Xie, S. and Zheng, X. (2016) Efficient Estimation of Integrated Volatility Incorporating Trading Information. Journal of Econometrics, 195, 33-50.
https://doi.org/10.1016/j.jeconom.2016.05.017
[9]  Merton, R.C. (1976) Option Pricing When Underlying Stock Returns Are Discontinuous. Journal of Financial Economics, 3, 125-144.
https://doi.org/10.1016/0304-405X(76)90022-2
[10]  Duffie, D., Pan, J. and Singleton, K. (2000) Transform Analysis and Asset Pricing for Affine Jump-Diffusions. Econometrica, 68, 1343-1376.
https://doi.org/10.1111/1468-0262.00164
[11]  Pan, J. (2002) The Jump-Risk Premia Implicit in Options: Evidence from an Integrated Time Series Study. Journal of Financial Economics, 63, 3-50.
https://doi.org/10.1016/S0304-405X(01)00088-5
[12]  Eraker, B., Johannes, M. and Polson, N. (2003) The Impact of Jumps in Equity Index Volatility and Returns. Journal of Finance, 58, 1269-1300.
https://doi.org/10.1111/1540-6261.00566
[13]  Barndorff-Nielsen, O.E. and Shephard, N. (2004) Power and Bipower Variation with Stochastic Volatility and Jumps. Economics Papers, 2, 1-37.
https://doi.org/10.1093/jjfinec/nbh001
[14]  Barndorff-Nielsen, O.E. and Shephard, N. (2006) Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation. Journal of Financial Econometrics, 4, 1-30.
https://doi.org/10.1093/jjfinec/nbi022
[15]  Mancini, C. (2004) Estimation of the Characteristics of the Jumps of a General Poisson-Diffusion Model. Scandinavian Actuarial Journal, 2004, 42-52.
https://doi.org/10.1080/034612303100170091
[16]  Mancini, C. (2009) Non-Parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps. Scandinavian Journal of Statistics, 36, 270-296.
https://doi.org/10.1111/j.1467-9469.2008.00622.x
[17]  Christensen, K. and Podolskij, M. (2012) Asymptotic Theory of Range-Based Multipower Variation. Journal of Financial Econometrics, 10, 417-456.
https://doi.org/10.1093/jjfinec/nbr019
[18]  Todorov, V. (2009) Estimation of Continuous-Time Stochastic Volatility Models with Jumps Using High-Frequency Data. Journal of Econometrics, 148, 131-148.
https://doi.org/10.1016/j.jeconom.2008.10.005
[19]  Todorov, V. (2010) Variance Risk-Premium Dynamics: The Role of Jumps. Review of Financial Studies, 23, 345-383.
https://doi.org/10.1093/rfs/hhp035
[20]  At-Sahalia, Y. and Jacod, J. (2009) Estimating the Degree of Activity of Jumps in High Frequency Data. Annals of Statistics, 37, 2202-2244.
https://doi.org/10.1214/08-AOS640
[21]  At-Sahalia, Y. and Jacod, J. (2011) Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data. Journal of Economic Literature, 50, 1007-1050.
https://doi.org/10.1257/jel.50.4.1007
[22]  Tauchen, G. and Zhou, H. (2011) Realized Jumps on Financial Markets and Predicting Credit Spreads. Journal of Econometrics, 160, 102-118.
https://doi.org/10.1016/j.jeconom.2010.03.023
[23]  Foster, D.P. and Nelson, D.B. (1996) Continuous Record Asymptotics for Rolling Sample Variance Estimators. Modelling Stock Market Volatility, 64, 291-329.
https://doi.org/10.1016/B978-012598275-7.50011-9
[24]  Andreou, E. and Ghysels, E. (2002) Rolling-Sample Volatility Estimators: Some New Theoretical, Simulation and Empirical Results. Journal of Business & Economic Statistics, 20, 363-376.
https://doi.org/10.1198/073500102288618504
[25]  Fan, J. and Wang, Y. (2008) Spot Volatility Estimation for High-Frequency Data. Statistics and Its Interface, 1, 279-288.
https://doi.org/10.4310/SII.2008.v1.n2.a5
[26]  Shigeyoshi, O. and Simona, S. (2011) An Improved Two-Step Regularization Scheme for Spot Volatility Estimation. Economic Notes, 40, 107-134.
https://doi.org/10.1111/j.1468-0300.2011.00233.x
[27]  Zu, Y. and Boswijk, H.P. (2014) Estimating Spot Volatility with High-Frequency Financial Data. Journal of Econometrics, 181, 117-135.
https://doi.org/10.1016/j.jeconom.2014.04.001
[28]  Yu, C., Fang, Y., Li, Z., Zhang, B. and Zhao, X. (2014) Non Parametric Estimation of High-Frequency Spot Volatility for Brownian Semimartingale with Jumps. Journal of Time Series Analysis, 35, 572-591.
https://doi.org/10.1111/jtsa.12082
[29]  Mancini, C., Mattiussi, V. and Renò, R. (2015) Spot Volatility Estimation Using Delta Sequences. Finance and Stochastics, 19, 261-293.
https://doi.org/10.1007/s00780-015-0255-1
[30]  Curato, I.V., Mancino, M.E. and Recchioni, M.C. (2018) Spot Volatility Estimation Using the Laplace Transform. Econometrics and Statistics, 6, 22-43.
https://doi.org/10.1016/j.ecosta.2016.07.002
[31]  Liu, Q., Liu, Y., Liu, Z. and Wang, L. (2018) Estimation of Spot Volatility with Superposed Noisy Data. The North American Journal of Economics and Finance, 44, 62-79.
https://doi.org/10.1016/j.najef.2017.11.004
[32]  Kristensen, D. (2010) Nonparametric Filtering of the Realized Spot Volatility: A Kernel-Based Approach. Econometric Theory, 26, 60-93.
https://doi.org/10.1017/S0266466609090616
[33]  Gasser, T. and Müller, H.G. (1979) Kernel Estimation of Regression Functions. In: Gasser, T. and Rosenblatt, M., Eds., Smoothing Techniques for Curve Estimation, Springer-Verlag, Berlin, 23-68.
https://doi.org/10.1007/BFb0098489
[34]  Bandi, F.M. and Nguyen, T.H. (2003) On the Functional Estimation of Jump-Diffusion Models. Journal of Econometrics, 116, 293-328.
https://doi.org/10.1016/S0304-4076(03)00110-6
[35]  Bandi, F.M. and Phillips, P.C.B. (2003) Fully Nonparametric Estimation of Scalar Diffusion Models. Econometrica, 71, 241-283.
https://doi.org/10.1111/1468-0262.00395
[36]  Rosenthal, H.P. (1970) On the Estimations of Sums of Independent Random Variables. Israel Journal of Mathematics, 8, 273-303.
https://doi.org/10.1007/BF02771562
[37]  Kanaya, S. and Kristensen, D. (2016) Estimation of Stochastic Volatility Models by Nonparametric Filtering. Econometric Theory, 32, 861-916.
https://doi.org/10.1017/S0266466615000079
[38]  Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall, London.
https://doi.org/10.1007/978-1-4899-3324-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133